球面模糊和软拓扑:一些应用

IF 2 Q1 MATHEMATICS
A. Azzam
{"title":"球面模糊和软拓扑:一些应用","authors":"A. Azzam","doi":"10.22436/jmcs.032.02.05","DOIUrl":null,"url":null,"abstract":"A generalized soft set model that is more accurate, useful, and realistic is the spherical fuzzy soft set. So, the fuzzy soft topological models in use can be extended to create spherical fuzzy soft topological spaces, which are valuable for expressing unreliable data in real-world applications. Subbase, separation axioms, compactness, and connectedness are all defined in this work. To examine these notions’ features, we also investigate their forefathers. The application of a decision-making algorithm is then demonstrated, and a numerical example is used to describe how it can be used.","PeriodicalId":45497,"journal":{"name":"Journal of Mathematics and Computer Science-JMCS","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical fuzzy and soft topology: some applications\",\"authors\":\"A. Azzam\",\"doi\":\"10.22436/jmcs.032.02.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized soft set model that is more accurate, useful, and realistic is the spherical fuzzy soft set. So, the fuzzy soft topological models in use can be extended to create spherical fuzzy soft topological spaces, which are valuable for expressing unreliable data in real-world applications. Subbase, separation axioms, compactness, and connectedness are all defined in this work. To examine these notions’ features, we also investigate their forefathers. The application of a decision-making algorithm is then demonstrated, and a numerical example is used to describe how it can be used.\",\"PeriodicalId\":45497,\"journal\":{\"name\":\"Journal of Mathematics and Computer Science-JMCS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Computer Science-JMCS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jmcs.032.02.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Computer Science-JMCS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jmcs.032.02.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

球形模糊软集是一种更为准确、实用和真实的广义软集模型。因此,可以将现有的模糊软拓扑模型扩展为球形模糊软拓扑空间,从而在实际应用中表达不可靠数据。子基、分离公理、紧性和连通性都在此工作中被定义。为了考察这些概念的特征,我们还考察了它们的起源。然后演示了决策算法的应用,并通过一个数值例子说明了如何使用决策算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical fuzzy and soft topology: some applications
A generalized soft set model that is more accurate, useful, and realistic is the spherical fuzzy soft set. So, the fuzzy soft topological models in use can be extended to create spherical fuzzy soft topological spaces, which are valuable for expressing unreliable data in real-world applications. Subbase, separation axioms, compactness, and connectedness are all defined in this work. To examine these notions’ features, we also investigate their forefathers. The application of a decision-making algorithm is then demonstrated, and a numerical example is used to describe how it can be used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
4.00%
发文量
77
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信