{"title":"柔性系统高斯-约当消去的显式公式","authors":"N. Tran, Júlia Justino, I. Berg","doi":"10.1515/spma-2022-0168","DOIUrl":null,"url":null,"abstract":"Abstract Flexible systems are obtained from systems of linear equations by adding to the elements of the coefficient matrix and the right-hand side scalar neutrices, which are convex groups of (non-standard) real numbers. The neutrices model imprecisions, giving rise to calculation rules extending informal error calculus. Stability conditions for flexible systems are given in terms of relative imprecision and size of determinants. We then apply the explicit formula for the elements of the successive intermediate matrices of the Gauss-Jordan elimination procedure to find the solution of flexible systems, keeping track of the error terms at every stage. The solution respects the original imprecisions in the right-hand side and is the same as the one given by Cramer’s rule.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"366 - 393"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The explicit formula for Gauss-Jordan elimination applied to flexible systems\",\"authors\":\"N. Tran, Júlia Justino, I. Berg\",\"doi\":\"10.1515/spma-2022-0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Flexible systems are obtained from systems of linear equations by adding to the elements of the coefficient matrix and the right-hand side scalar neutrices, which are convex groups of (non-standard) real numbers. The neutrices model imprecisions, giving rise to calculation rules extending informal error calculus. Stability conditions for flexible systems are given in terms of relative imprecision and size of determinants. We then apply the explicit formula for the elements of the successive intermediate matrices of the Gauss-Jordan elimination procedure to find the solution of flexible systems, keeping track of the error terms at every stage. The solution respects the original imprecisions in the right-hand side and is the same as the one given by Cramer’s rule.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"10 1\",\"pages\":\"366 - 393\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2022-0168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The explicit formula for Gauss-Jordan elimination applied to flexible systems
Abstract Flexible systems are obtained from systems of linear equations by adding to the elements of the coefficient matrix and the right-hand side scalar neutrices, which are convex groups of (non-standard) real numbers. The neutrices model imprecisions, giving rise to calculation rules extending informal error calculus. Stability conditions for flexible systems are given in terms of relative imprecision and size of determinants. We then apply the explicit formula for the elements of the successive intermediate matrices of the Gauss-Jordan elimination procedure to find the solution of flexible systems, keeping track of the error terms at every stage. The solution respects the original imprecisions in the right-hand side and is the same as the one given by Cramer’s rule.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.