利用图像处理和自动分类模型对显微革兰氏染色图像进行分类

Kris Kristensen , Logan Morgan Ward , Mads Lause Mogensen , Simon Lebech Cichosz
{"title":"利用图像处理和自动分类模型对显微革兰氏染色图像进行分类","authors":"Kris Kristensen ,&nbsp;Logan Morgan Ward ,&nbsp;Mads Lause Mogensen ,&nbsp;Simon Lebech Cichosz","doi":"10.1016/j.cmpbup.2022.100091","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><p>Fast and correct classification of bacterial samples are important for accurate diagnostics and treatment. Manual microscopic interpretation of Gram stain samples is both time consuming and operator dependent. The aim of this study was to investigate the potential for developing an automated algorithm for the classification of microscopic Gram stain images.</p></div><div><h3>Methods</h3><p>We developed and tested two algorithms (using image processing an Casual Probabilistic Network (CPN) and a Random Forest (RF) classification) for the automated classification of Gram stain images. A dataset of 660 images including 33 microbial species (32 bacteria and one fungus) was split into training, validation, and test sets. The algorithms were evaluated based on their ability to correctly classify samples and general characteristics such as aggregation and morphology.</p></div><div><h3>Results</h3><p>The CPN correctly classified 633/792 images to achieve an overall accuracy of 80% compared to the RF which correctly classified 782/792 images to achieve an overall accuracy of 99% (<em>p</em> &lt; 0.001). The CPN performed well when distinguishing between GN and GP, with an accuracy of 95% (731/768). The RF also performed well in distinguishing between GN and GP, achieving an accuracy of 99% (767/768) (<em>p</em> &lt; 0.001).</p></div><div><h3>Conclusions</h3><p>The findings from this study show promising results regarding the potential for an automated algorithm for the classification of microscopic Gram stain images.</p></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"3 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using image processing and automated classification models to classify microscopic gram stain images\",\"authors\":\"Kris Kristensen ,&nbsp;Logan Morgan Ward ,&nbsp;Mads Lause Mogensen ,&nbsp;Simon Lebech Cichosz\",\"doi\":\"10.1016/j.cmpbup.2022.100091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective</h3><p>Fast and correct classification of bacterial samples are important for accurate diagnostics and treatment. Manual microscopic interpretation of Gram stain samples is both time consuming and operator dependent. The aim of this study was to investigate the potential for developing an automated algorithm for the classification of microscopic Gram stain images.</p></div><div><h3>Methods</h3><p>We developed and tested two algorithms (using image processing an Casual Probabilistic Network (CPN) and a Random Forest (RF) classification) for the automated classification of Gram stain images. A dataset of 660 images including 33 microbial species (32 bacteria and one fungus) was split into training, validation, and test sets. The algorithms were evaluated based on their ability to correctly classify samples and general characteristics such as aggregation and morphology.</p></div><div><h3>Results</h3><p>The CPN correctly classified 633/792 images to achieve an overall accuracy of 80% compared to the RF which correctly classified 782/792 images to achieve an overall accuracy of 99% (<em>p</em> &lt; 0.001). The CPN performed well when distinguishing between GN and GP, with an accuracy of 95% (731/768). The RF also performed well in distinguishing between GN and GP, achieving an accuracy of 99% (767/768) (<em>p</em> &lt; 0.001).</p></div><div><h3>Conclusions</h3><p>The findings from this study show promising results regarding the potential for an automated algorithm for the classification of microscopic Gram stain images.</p></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"3 \",\"pages\":\"Article 100091\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990022000428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990022000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

背景与目的快速、正确的细菌分类对准确诊断和治疗具有重要意义。革兰氏染色样品的人工显微解释既耗时又依赖于操作人员。本研究的目的是研究开发一种用于显微革兰氏染色图像分类的自动算法的潜力。方法我们开发并测试了两种用于革兰氏染色图像自动分类的算法(使用图像处理随机概率网络(CPN)和随机森林(RF)分类)。包含33种微生物(32种细菌和1种真菌)的660幅图像的数据集被分为训练集、验证集和测试集。这些算法是根据它们正确分类样本的能力和一般特征(如聚集和形态)来评估的。结果CPN正确分类633/792张图像,总体准确率为80%,而RF正确分类782/792张图像,总体准确率为99% (p <0.001)。CPN在区分GN和GP时表现良好,准确率为95%(731/768)。RF在区分GN和GP方面也表现良好,准确率达到99% (767/768)(p <0.001)。结论本研究的结果显示了一种用于显微革兰氏染色图像分类的自动化算法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using image processing and automated classification models to classify microscopic gram stain images

Background and Objective

Fast and correct classification of bacterial samples are important for accurate diagnostics and treatment. Manual microscopic interpretation of Gram stain samples is both time consuming and operator dependent. The aim of this study was to investigate the potential for developing an automated algorithm for the classification of microscopic Gram stain images.

Methods

We developed and tested two algorithms (using image processing an Casual Probabilistic Network (CPN) and a Random Forest (RF) classification) for the automated classification of Gram stain images. A dataset of 660 images including 33 microbial species (32 bacteria and one fungus) was split into training, validation, and test sets. The algorithms were evaluated based on their ability to correctly classify samples and general characteristics such as aggregation and morphology.

Results

The CPN correctly classified 633/792 images to achieve an overall accuracy of 80% compared to the RF which correctly classified 782/792 images to achieve an overall accuracy of 99% (p < 0.001). The CPN performed well when distinguishing between GN and GP, with an accuracy of 95% (731/768). The RF also performed well in distinguishing between GN and GP, achieving an accuracy of 99% (767/768) (p < 0.001).

Conclusions

The findings from this study show promising results regarding the potential for an automated algorithm for the classification of microscopic Gram stain images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信