A. Windyandari, O. Kurdi, Sulardjaka, M. Tauviqirrahman
{"title":"前碰撞载荷作用下混杂型椰壳-玻璃纤维复合材料渔船船体船头结构损伤分析","authors":"A. Windyandari, O. Kurdi, Sulardjaka, M. Tauviqirrahman","doi":"10.1515/cls-2022-0020","DOIUrl":null,"url":null,"abstract":"Abstract Hybridization of natural and synthetic fibers has the ability to improve composite performance. It means that the combination of natural fibers such as coir, jute, bamboo, and sisal with synthetic or glass fiber can broaden the role of the composite material, especially for structural application. This study developed a finite element simulation to investigate the damage to the bow structure of the fishing boat hull, which was produced using hybrid coir-glass fiber composite (HCGFRP) material subjected to front collision load. The experimental measurement was conducted to determine the mechanical properties of four hybrid composite laminates defined based on the differences in their layers number, fiber types, and orientation angle. Moreover, a numerical simulation model was applied to the traditional fishing boat colliding with fishery harbor quay, and the scenario was defined by varying the boat speed and the types of laminates adopted on the hull structure. The results showed the damage level for the bow structure of the HCGFRP boat due to the collision accidents, while the numerical findings are expected to be used as the basic knowledge in applying the hybrid coir-glass fiber laminates composite as an alternative hull construction material.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"236 - 257"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bow structure damage analysis for hybrid coir-glass fiber composite fishing boat hull subjected to front collision load\",\"authors\":\"A. Windyandari, O. Kurdi, Sulardjaka, M. Tauviqirrahman\",\"doi\":\"10.1515/cls-2022-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hybridization of natural and synthetic fibers has the ability to improve composite performance. It means that the combination of natural fibers such as coir, jute, bamboo, and sisal with synthetic or glass fiber can broaden the role of the composite material, especially for structural application. This study developed a finite element simulation to investigate the damage to the bow structure of the fishing boat hull, which was produced using hybrid coir-glass fiber composite (HCGFRP) material subjected to front collision load. The experimental measurement was conducted to determine the mechanical properties of four hybrid composite laminates defined based on the differences in their layers number, fiber types, and orientation angle. Moreover, a numerical simulation model was applied to the traditional fishing boat colliding with fishery harbor quay, and the scenario was defined by varying the boat speed and the types of laminates adopted on the hull structure. The results showed the damage level for the bow structure of the HCGFRP boat due to the collision accidents, while the numerical findings are expected to be used as the basic knowledge in applying the hybrid coir-glass fiber laminates composite as an alternative hull construction material.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"9 1\",\"pages\":\"236 - 257\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Bow structure damage analysis for hybrid coir-glass fiber composite fishing boat hull subjected to front collision load
Abstract Hybridization of natural and synthetic fibers has the ability to improve composite performance. It means that the combination of natural fibers such as coir, jute, bamboo, and sisal with synthetic or glass fiber can broaden the role of the composite material, especially for structural application. This study developed a finite element simulation to investigate the damage to the bow structure of the fishing boat hull, which was produced using hybrid coir-glass fiber composite (HCGFRP) material subjected to front collision load. The experimental measurement was conducted to determine the mechanical properties of four hybrid composite laminates defined based on the differences in their layers number, fiber types, and orientation angle. Moreover, a numerical simulation model was applied to the traditional fishing boat colliding with fishery harbor quay, and the scenario was defined by varying the boat speed and the types of laminates adopted on the hull structure. The results showed the damage level for the bow structure of the HCGFRP boat due to the collision accidents, while the numerical findings are expected to be used as the basic knowledge in applying the hybrid coir-glass fiber laminates composite as an alternative hull construction material.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.