加冕仪式和米制空间中的大件

Pub Date : 2020-08-26 DOI:10.5802/aif.3518
S. Bortz, J. Hoffman, S. Hofmann, J. García, Kaj Nystrom
{"title":"加冕仪式和米制空间中的大件","authors":"S. Bortz, J. Hoffman, S. Hofmann, J. García, Kaj Nystrom","doi":"10.5802/aif.3518","DOIUrl":null,"url":null,"abstract":"We prove that coronizations with respect to arbitrary d-regular sets (not necessarily graphs) imply big pieces squared of these (approximating) sets. This is known (and due to David and Semmes in the case of sufficiently large co-dimension, and to Azzam and Schul in general) in the (classical) setting of Euclidean spaces with Hausdorff measure of integer dimension, where the approximating sets are Lipschitz graphs. Our result is a far reaching generalization of these results and we prove that coronizations imply big pieces squared is a generic property. In particular, our result applies, when suitably interpreted, in metric spaces having a fixed positive (perhaps non-integer) dimension, equipped with a Borel regular measure and with arbitrary approximating sets. As a novel application we highlight how to utilize this general setting in the context of parabolic uniform rectifiability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Coronizations and big pieces in metric spaces\",\"authors\":\"S. Bortz, J. Hoffman, S. Hofmann, J. García, Kaj Nystrom\",\"doi\":\"10.5802/aif.3518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that coronizations with respect to arbitrary d-regular sets (not necessarily graphs) imply big pieces squared of these (approximating) sets. This is known (and due to David and Semmes in the case of sufficiently large co-dimension, and to Azzam and Schul in general) in the (classical) setting of Euclidean spaces with Hausdorff measure of integer dimension, where the approximating sets are Lipschitz graphs. Our result is a far reaching generalization of these results and we prove that coronizations imply big pieces squared is a generic property. In particular, our result applies, when suitably interpreted, in metric spaces having a fixed positive (perhaps non-integer) dimension, equipped with a Borel regular measure and with arbitrary approximating sets. As a novel application we highlight how to utilize this general setting in the context of parabolic uniform rectifiability.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们证明了关于任意d-正则集(不一定是图)的共电离意味着这些(近似)集的大块平方。这在具有整数维的Hausdorff测度的欧几里得空间的(经典)设置中是已知的(并且由于David和Semmes在足够大的共维的情况下,以及Azzam和Schul),其中近似集是Lipschitz图。我们的结果是这些结果的一个很好的推广,我们证明了coronization意味着大块平方是一个一般性质。特别地,当适当地解释时,我们的结果适用于具有固定正(可能是非整数)维度、配备有Borel正则测度和任意近似集的度量空间。作为一个新颖的应用,我们强调了如何在抛物型一致可直性的背景下利用这一通用设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Coronizations and big pieces in metric spaces
We prove that coronizations with respect to arbitrary d-regular sets (not necessarily graphs) imply big pieces squared of these (approximating) sets. This is known (and due to David and Semmes in the case of sufficiently large co-dimension, and to Azzam and Schul in general) in the (classical) setting of Euclidean spaces with Hausdorff measure of integer dimension, where the approximating sets are Lipschitz graphs. Our result is a far reaching generalization of these results and we prove that coronizations imply big pieces squared is a generic property. In particular, our result applies, when suitably interpreted, in metric spaces having a fixed positive (perhaps non-integer) dimension, equipped with a Borel regular measure and with arbitrary approximating sets. As a novel application we highlight how to utilize this general setting in the context of parabolic uniform rectifiability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信