重访系词的最大不对称性

IF 0.8 Q4 STATISTICS & PROBABILITY
Noppadon Kamnitui, J. Fernández-Sánchez, W. Trutschnig
{"title":"重访系词的最大不对称性","authors":"Noppadon Kamnitui, J. Fernández-Sánchez, W. Trutschnig","doi":"10.1515/demo-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by the nice characterization of copulas A for which d∞(A, At) is maximal as established independently by Nelsen [11] and Klement & Mesiar [7], we study maximum asymmetry with respect to the conditioning-based metric D1 going back to Trutschnig [12]. Despite the fact that D1(A, At) is generally not straightforward to calculate, it is possible to provide both, a characterization and a handy representation of all copulas A maximizing D1(A, At). This representation is then used to prove the existence of copulas with full support maximizing D1(A, At). A comparison of D1- and d∞-asymmetry including some surprising examples rounds off the paper.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"6 1","pages":"47 - 62"},"PeriodicalIF":0.8000,"publicationDate":"2018-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2018-0003","citationCount":"5","resultStr":"{\"title\":\"Maximum asymmetry of copulas revisited\",\"authors\":\"Noppadon Kamnitui, J. Fernández-Sánchez, W. Trutschnig\",\"doi\":\"10.1515/demo-2018-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Motivated by the nice characterization of copulas A for which d∞(A, At) is maximal as established independently by Nelsen [11] and Klement & Mesiar [7], we study maximum asymmetry with respect to the conditioning-based metric D1 going back to Trutschnig [12]. Despite the fact that D1(A, At) is generally not straightforward to calculate, it is possible to provide both, a characterization and a handy representation of all copulas A maximizing D1(A, At). This representation is then used to prove the existence of copulas with full support maximizing D1(A, At). A comparison of D1- and d∞-asymmetry including some surprising examples rounds off the paper.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"6 1\",\"pages\":\"47 - 62\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2018-0003\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2018-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

摘要利用由Nelsen[11]和klement&mesiar[7]独立建立的d∞(A, At)最大的copuls A的良好表征,我们研究了基于条件的度量D1的最大不对称性,该度量可回溯到Trutschnig[12]。尽管D1(A, At)通常不容易计算,但可以同时提供所有copula A最大化D1(A, At)的表征和简便表示。然后用这个表示证明了满支持最大化D1(A, At)的联结的存在性。D1-和d∞-不对称的比较,包括一些令人惊讶的例子,使本文更加完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum asymmetry of copulas revisited
Abstract Motivated by the nice characterization of copulas A for which d∞(A, At) is maximal as established independently by Nelsen [11] and Klement & Mesiar [7], we study maximum asymmetry with respect to the conditioning-based metric D1 going back to Trutschnig [12]. Despite the fact that D1(A, At) is generally not straightforward to calculate, it is possible to provide both, a characterization and a handy representation of all copulas A maximizing D1(A, At). This representation is then used to prove the existence of copulas with full support maximizing D1(A, At). A comparison of D1- and d∞-asymmetry including some surprising examples rounds off the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信