椭圆曲线的扭曲根数

IF 0.3 4区 数学 Q4 MATHEMATICS
Julie Desjardins
{"title":"椭圆曲线的扭曲根数","authors":"Julie Desjardins","doi":"10.5802/jtnb.1112","DOIUrl":null,"url":null,"abstract":"We give an explicit description of the behaviour of the root number in the family given by the twists of an elliptic curve $E$ by the rational values of a polynomial $f(T)$. In particular, we give a criterion (on $f$ depending on $E$) for the family to have a constant root number over $\\mathbb{Q}$. This completes a work of Rohrlich: we detail the behaviour of the root number when $E$ has bad reduction over $\\mathbb{Q}^{ab}$ and we treat the cases $j(E)=0,1728$ which were not considered by Rohrlich.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Root number of twists of an elliptic curve\",\"authors\":\"Julie Desjardins\",\"doi\":\"10.5802/jtnb.1112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit description of the behaviour of the root number in the family given by the twists of an elliptic curve $E$ by the rational values of a polynomial $f(T)$. In particular, we give a criterion (on $f$ depending on $E$) for the family to have a constant root number over $\\\\mathbb{Q}$. This completes a work of Rohrlich: we detail the behaviour of the root number when $E$ has bad reduction over $\\\\mathbb{Q}^{ab}$ and we treat the cases $j(E)=0,1728$ which were not considered by Rohrlich.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1112\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们用多项式$f(T)$的有理值给出了由椭圆曲线$E$的扭曲所给出的族中根数的行为的显式描述。特别地,我们给出了一个标准(关于$f$,取决于$E$),使该族在$\mathbb{Q}$上有一个常数根数。这完成了Rohrlich的一项工作:我们详细描述了当$E$在$\mathbb{Q}^{ab}$上具有坏约简时根数的行为,并且我们处理了Rohrich没有考虑的情况$j(E)=01728$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root number of twists of an elliptic curve
We give an explicit description of the behaviour of the root number in the family given by the twists of an elliptic curve $E$ by the rational values of a polynomial $f(T)$. In particular, we give a criterion (on $f$ depending on $E$) for the family to have a constant root number over $\mathbb{Q}$. This completes a work of Rohrlich: we detail the behaviour of the root number when $E$ has bad reduction over $\mathbb{Q}^{ab}$ and we treat the cases $j(E)=0,1728$ which were not considered by Rohrlich.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信