Robert Dongas, Kazjon Grace, Samuel Gillespie, Marius Hoggenmueller, M. Tomitsch, Stewart Worrall
{"title":"虚拟城市实地研究:使用基于上下文的界面原型评估城市交互设计","authors":"Robert Dongas, Kazjon Grace, Samuel Gillespie, Marius Hoggenmueller, M. Tomitsch, Stewart Worrall","doi":"10.3390/mti7080082","DOIUrl":null,"url":null,"abstract":"In this study, we propose the use of virtual urban field studies (VUFS) through context-based interface prototypes for evaluating the interaction design of auditory interfaces. Virtual field tests use mixed-reality technologies to combine the fidelity of real-world testing with the affordability and speed of testing in the lab. In this paper, we apply this concept to rapidly test sound designs for autonomous vehicle (AV)–pedestrian interaction with a high degree of realism and fidelity. We also propose the use of psychometrically validated measures of presence in validating the verisimilitude of VUFS. Using mixed qualitative and quantitative methods, we analysed users’ perceptions of presence in our VUFS prototype and the relationship to our prototype’s effectiveness. We also examined the use of higher-order ambisonic spatialised audio and its impact on presence. Our results provide insights into how VUFS can be designed to facilitate presence as well as design guidelines for how this can be leveraged.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Urban Field Studies: Evaluating Urban Interaction Design Using Context-Based Interface Prototypes\",\"authors\":\"Robert Dongas, Kazjon Grace, Samuel Gillespie, Marius Hoggenmueller, M. Tomitsch, Stewart Worrall\",\"doi\":\"10.3390/mti7080082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose the use of virtual urban field studies (VUFS) through context-based interface prototypes for evaluating the interaction design of auditory interfaces. Virtual field tests use mixed-reality technologies to combine the fidelity of real-world testing with the affordability and speed of testing in the lab. In this paper, we apply this concept to rapidly test sound designs for autonomous vehicle (AV)–pedestrian interaction with a high degree of realism and fidelity. We also propose the use of psychometrically validated measures of presence in validating the verisimilitude of VUFS. Using mixed qualitative and quantitative methods, we analysed users’ perceptions of presence in our VUFS prototype and the relationship to our prototype’s effectiveness. We also examined the use of higher-order ambisonic spatialised audio and its impact on presence. Our results provide insights into how VUFS can be designed to facilitate presence as well as design guidelines for how this can be leveraged.\",\"PeriodicalId\":52297,\"journal\":{\"name\":\"Multimodal Technologies and Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Technologies and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mti7080082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti7080082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Virtual Urban Field Studies: Evaluating Urban Interaction Design Using Context-Based Interface Prototypes
In this study, we propose the use of virtual urban field studies (VUFS) through context-based interface prototypes for evaluating the interaction design of auditory interfaces. Virtual field tests use mixed-reality technologies to combine the fidelity of real-world testing with the affordability and speed of testing in the lab. In this paper, we apply this concept to rapidly test sound designs for autonomous vehicle (AV)–pedestrian interaction with a high degree of realism and fidelity. We also propose the use of psychometrically validated measures of presence in validating the verisimilitude of VUFS. Using mixed qualitative and quantitative methods, we analysed users’ perceptions of presence in our VUFS prototype and the relationship to our prototype’s effectiveness. We also examined the use of higher-order ambisonic spatialised audio and its impact on presence. Our results provide insights into how VUFS can be designed to facilitate presence as well as design guidelines for how this can be leveraged.