基于功能数据框架的概率潜变量模型的数据驱动软测量方法

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Xiaoying Tan, Wei Guo, Ran Liu, Tianhong Pan
{"title":"基于功能数据框架的概率潜变量模型的数据驱动软测量方法","authors":"Xiaoying Tan, Wei Guo, Ran Liu, Tianhong Pan","doi":"10.1177/01423312231181379","DOIUrl":null,"url":null,"abstract":"Functional principal component analysis (FPCA) and functional partial least squares (FPLS) are two mainstream functional data analysis (FDA) methods, which have been commonly used to extract deep information hidden in the original data space. However, the process data always contain random noise, which affects the performance of FDA models. To overcome this issue, two functional probabilistic latent variable models (FPLVMs), including functional probabilistic principal component analysis (FPPCA) and functional probabilistic partial least squares (FPPLS) are proposed in this work. First, the process data are converted into functional data using the FDA. Subsequently, a log-likelihood function considering the noise factor and functional latent variables is designed. Finally, the regression model parameters are estimated using an expectation–maximisation algorithm. In contrast to FPPCA, FPPLS decomposes the process data and the key variable with constrained latent variables, which is similar to the partial least squares (PLS) and the principal component analysis (PCA). Moreover, the degeneration mechanism from FPLVMs into probabilistic latent variable models and latent variable models is discussed. An adaptive strategy with functional covariance is used to satisfy the online predictive capabilities of the model. Finally, the proposed approach is validated using a numerical case, the Tennessee Eastman process and an industrial o-xylene distillation column for evaluation.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven soft-sensing approach using probabilistic latent variable model with functional data framework\",\"authors\":\"Xiaoying Tan, Wei Guo, Ran Liu, Tianhong Pan\",\"doi\":\"10.1177/01423312231181379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional principal component analysis (FPCA) and functional partial least squares (FPLS) are two mainstream functional data analysis (FDA) methods, which have been commonly used to extract deep information hidden in the original data space. However, the process data always contain random noise, which affects the performance of FDA models. To overcome this issue, two functional probabilistic latent variable models (FPLVMs), including functional probabilistic principal component analysis (FPPCA) and functional probabilistic partial least squares (FPPLS) are proposed in this work. First, the process data are converted into functional data using the FDA. Subsequently, a log-likelihood function considering the noise factor and functional latent variables is designed. Finally, the regression model parameters are estimated using an expectation–maximisation algorithm. In contrast to FPPCA, FPPLS decomposes the process data and the key variable with constrained latent variables, which is similar to the partial least squares (PLS) and the principal component analysis (PCA). Moreover, the degeneration mechanism from FPLVMs into probabilistic latent variable models and latent variable models is discussed. An adaptive strategy with functional covariance is used to satisfy the online predictive capabilities of the model. Finally, the proposed approach is validated using a numerical case, the Tennessee Eastman process and an industrial o-xylene distillation column for evaluation.\",\"PeriodicalId\":49426,\"journal\":{\"name\":\"Transactions of the Institute of Measurement and Control\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Institute of Measurement and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/01423312231181379\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312231181379","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

功能主成分分析(FPCA)和功能偏最小二乘(FPLS)是两种主流的功能数据分析(FDA)方法,常用来提取隐藏在原始数据空间中的深度信息。然而,过程数据中总是含有随机噪声,影响了FDA模型的性能。为了克服这一问题,本文提出了两种功能概率潜变量模型(fplvm),即功能概率主成分分析(FPPCA)和功能概率偏最小二乘(FPPLS)。首先,使用FDA将过程数据转换为功能数据。然后,设计了考虑噪声因子和功能潜变量的对数似然函数。最后,使用期望最大化算法估计回归模型参数。相对于FPPCA, FPPLS用约束潜变量对过程数据和关键变量进行分解,类似于偏最小二乘(PLS)和主成分分析(PCA)。讨论了fplvm向概率潜变量模型和潜变量模型退化的机理。采用函数协方差自适应策略来满足模型的在线预测能力。最后,用数值实例、田纳西伊士曼工艺和工业邻二甲苯精馏塔进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven soft-sensing approach using probabilistic latent variable model with functional data framework
Functional principal component analysis (FPCA) and functional partial least squares (FPLS) are two mainstream functional data analysis (FDA) methods, which have been commonly used to extract deep information hidden in the original data space. However, the process data always contain random noise, which affects the performance of FDA models. To overcome this issue, two functional probabilistic latent variable models (FPLVMs), including functional probabilistic principal component analysis (FPPCA) and functional probabilistic partial least squares (FPPLS) are proposed in this work. First, the process data are converted into functional data using the FDA. Subsequently, a log-likelihood function considering the noise factor and functional latent variables is designed. Finally, the regression model parameters are estimated using an expectation–maximisation algorithm. In contrast to FPPCA, FPPLS decomposes the process data and the key variable with constrained latent variables, which is similar to the partial least squares (PLS) and the principal component analysis (PCA). Moreover, the degeneration mechanism from FPLVMs into probabilistic latent variable models and latent variable models is discussed. An adaptive strategy with functional covariance is used to satisfy the online predictive capabilities of the model. Finally, the proposed approach is validated using a numerical case, the Tennessee Eastman process and an industrial o-xylene distillation column for evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信