{"title":"带有乘性噪声的未调整Langevin算法:总变异和Wasserstein边界","authors":"G. Pagès, Fabien Panloup","doi":"10.1214/22-aap1828","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step ({usually called Unadjusted Langevin Algorithm in the Monte Carlo literature}) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under {uniform} ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and $L^1$-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using {Stochastic Analysis} adapted to decreasing step setting.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds\",\"authors\":\"G. Pagès, Fabien Panloup\",\"doi\":\"10.1214/22-aap1828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step ({usually called Unadjusted Langevin Algorithm in the Monte Carlo literature}) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under {uniform} ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and $L^1$-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using {Stochastic Analysis} adapted to decreasing step setting.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1828\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1828","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds
In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step ({usually called Unadjusted Langevin Algorithm in the Monte Carlo literature}) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under {uniform} ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and $L^1$-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using {Stochastic Analysis} adapted to decreasing step setting.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.