{"title":"抑制乙烯结合及生物合成维持台塑李采后贮藏品质","authors":"Yong-Tae Kim, S. Ha, I. Chun, B. In","doi":"10.7235/HORT.20210033","DOIUrl":null,"url":null,"abstract":"This study was conducted to develop an ethylene inhibition method using aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) to improve postharvest quality and extend the shelf life of plums (Prunus subg. Prunus ‘Formosa’). Plums were sprayed preharvest with 150 mg·L -1 AVG and postharvest with 1 μL·L -1 1-MCP for 24 h. The results revealed that the combined treatment with AVG and 1-MCP (AVG+1-MCP) effectively suppressed skin color change, flesh firmness reduction, decay, and weight loss of plum fruit during postharvest storage. The acidity ratio was also significantly maintained during storage in AVG+1-MCP treated groups. The transcript levels of ethylene biosynthesis genes (PsACS3, PsACS4, and PsACO1) showed the same pattern as the amount of ethylene produced in plums. AVG+1-MCP treatment significantly inhibited transcript levels of PsACS3, PsACS4, and PsACO1 and the reduction in expression of signaling genes (PsETR1, PsERS1, and PsCTR1), resulting in a longer shelf life compared to the untreated control plums. Inhibition of ethylene biosynthesis and binding effectively suppressed senescence and ripening of plum fruit that show a climacteric rise of ethylene synthesis and respiration. Additional key words: ethylene inhibitor, gene expression, Prunus subg. Prunus, ripening, shelf life","PeriodicalId":17858,"journal":{"name":"Korean Journal of Horticultural Science & Technology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inhibition of Ethylene Binding and Biosynthesis Maintains Fruit Quality of ‘Formosa’ Plums during Postharvest Storage\",\"authors\":\"Yong-Tae Kim, S. Ha, I. Chun, B. In\",\"doi\":\"10.7235/HORT.20210033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was conducted to develop an ethylene inhibition method using aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) to improve postharvest quality and extend the shelf life of plums (Prunus subg. Prunus ‘Formosa’). Plums were sprayed preharvest with 150 mg·L -1 AVG and postharvest with 1 μL·L -1 1-MCP for 24 h. The results revealed that the combined treatment with AVG and 1-MCP (AVG+1-MCP) effectively suppressed skin color change, flesh firmness reduction, decay, and weight loss of plum fruit during postharvest storage. The acidity ratio was also significantly maintained during storage in AVG+1-MCP treated groups. The transcript levels of ethylene biosynthesis genes (PsACS3, PsACS4, and PsACO1) showed the same pattern as the amount of ethylene produced in plums. AVG+1-MCP treatment significantly inhibited transcript levels of PsACS3, PsACS4, and PsACO1 and the reduction in expression of signaling genes (PsETR1, PsERS1, and PsCTR1), resulting in a longer shelf life compared to the untreated control plums. Inhibition of ethylene biosynthesis and binding effectively suppressed senescence and ripening of plum fruit that show a climacteric rise of ethylene synthesis and respiration. Additional key words: ethylene inhibitor, gene expression, Prunus subg. Prunus, ripening, shelf life\",\"PeriodicalId\":17858,\"journal\":{\"name\":\"Korean Journal of Horticultural Science & Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Horticultural Science & Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.7235/HORT.20210033\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Horticultural Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.7235/HORT.20210033","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
Inhibition of Ethylene Binding and Biosynthesis Maintains Fruit Quality of ‘Formosa’ Plums during Postharvest Storage
This study was conducted to develop an ethylene inhibition method using aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) to improve postharvest quality and extend the shelf life of plums (Prunus subg. Prunus ‘Formosa’). Plums were sprayed preharvest with 150 mg·L -1 AVG and postharvest with 1 μL·L -1 1-MCP for 24 h. The results revealed that the combined treatment with AVG and 1-MCP (AVG+1-MCP) effectively suppressed skin color change, flesh firmness reduction, decay, and weight loss of plum fruit during postharvest storage. The acidity ratio was also significantly maintained during storage in AVG+1-MCP treated groups. The transcript levels of ethylene biosynthesis genes (PsACS3, PsACS4, and PsACO1) showed the same pattern as the amount of ethylene produced in plums. AVG+1-MCP treatment significantly inhibited transcript levels of PsACS3, PsACS4, and PsACO1 and the reduction in expression of signaling genes (PsETR1, PsERS1, and PsCTR1), resulting in a longer shelf life compared to the untreated control plums. Inhibition of ethylene biosynthesis and binding effectively suppressed senescence and ripening of plum fruit that show a climacteric rise of ethylene synthesis and respiration. Additional key words: ethylene inhibitor, gene expression, Prunus subg. Prunus, ripening, shelf life
期刊介绍:
Horticultural Science and Technology (abbr. Hortic. Sci. Technol., herein ‘HST’; ISSN, 1226-8763), one of the two official journals of the Korean Society for Horticultural Science (KSHS), was launched in 1998 to provides scientific and professional publication on technology and sciences of horticultural area. As an international journal, HST is published in English and Korean, bimonthly on the last day of even number months, and indexed in ‘SCIE’, ‘SCOPUS’ and ‘CABI’. The HST is devoted for the publication of technical and academic papers and review articles on such arears as cultivation physiology, protected horticulture, postharvest technology, genetics and breeding, tissue culture and biotechnology, and other related to vegetables, fruit, ornamental, and herbal plants.