{"title":"含二氧化硅/磷酸钙纳米复合颗粒的壳聚糖基注射用热敏水凝胶的制备与表征","authors":"S. Latifi, Christina Tang, H. Donahue","doi":"10.4236/jbnb.2021.123004","DOIUrl":null,"url":null,"abstract":"In this study, the effect of silica/calcium phosphate (SiCaP) nanocomposite particles on the properties of a novel chitosan-based thermosensitive hydrogel system was examined. SiCaP nanocomposite powder was fabricated using a sol-gel method and then used to fabricate nanocomposite hydrogels (Ch- β/7.5SiCaP and Ch-β/15SiCaP) including chitosan and β-glycerophosphate (Ch-β) as a matrix. Results revealed that compared to the Ch-β hydrogel without SiCaP, the presence of SiCaP particles in nanocomposite hydrogels maintained pH stability during the sol-gel transition, accelerated the gelation and improved the stiffness of nanocomposite hydrogels. Gelation time at 37℃ was reduced approximately 75% and stiffness was increased approximately 115%. Both of these changes are attributed to chemical and physical interactions of the SiCaP bioactive particles with chitosan. Furthermore, compared to the Ch-β hydrogel, the presence of SiCaP in the Ch-β/7.5SiCaP nanocomposite hydrogel did not affect biocompatibility negatively, but improved osteoblastic cell differentiation. Our studies suggest that these nanocomposite hydrogels may offer an innovative approach to bone regeneration strategies.","PeriodicalId":68623,"journal":{"name":"生物材料与纳米技术(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fabrication and Characterization of Chitosan Based Injectable Thermosensitive Hydrogels Containing Silica/Calcium Phosphate Nanocomposite Particles\",\"authors\":\"S. Latifi, Christina Tang, H. Donahue\",\"doi\":\"10.4236/jbnb.2021.123004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of silica/calcium phosphate (SiCaP) nanocomposite particles on the properties of a novel chitosan-based thermosensitive hydrogel system was examined. SiCaP nanocomposite powder was fabricated using a sol-gel method and then used to fabricate nanocomposite hydrogels (Ch- β/7.5SiCaP and Ch-β/15SiCaP) including chitosan and β-glycerophosphate (Ch-β) as a matrix. Results revealed that compared to the Ch-β hydrogel without SiCaP, the presence of SiCaP particles in nanocomposite hydrogels maintained pH stability during the sol-gel transition, accelerated the gelation and improved the stiffness of nanocomposite hydrogels. Gelation time at 37℃ was reduced approximately 75% and stiffness was increased approximately 115%. Both of these changes are attributed to chemical and physical interactions of the SiCaP bioactive particles with chitosan. Furthermore, compared to the Ch-β hydrogel, the presence of SiCaP in the Ch-β/7.5SiCaP nanocomposite hydrogel did not affect biocompatibility negatively, but improved osteoblastic cell differentiation. Our studies suggest that these nanocomposite hydrogels may offer an innovative approach to bone regeneration strategies.\",\"PeriodicalId\":68623,\"journal\":{\"name\":\"生物材料与纳米技术(英文)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物材料与纳米技术(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/jbnb.2021.123004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物材料与纳米技术(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/jbnb.2021.123004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and Characterization of Chitosan Based Injectable Thermosensitive Hydrogels Containing Silica/Calcium Phosphate Nanocomposite Particles
In this study, the effect of silica/calcium phosphate (SiCaP) nanocomposite particles on the properties of a novel chitosan-based thermosensitive hydrogel system was examined. SiCaP nanocomposite powder was fabricated using a sol-gel method and then used to fabricate nanocomposite hydrogels (Ch- β/7.5SiCaP and Ch-β/15SiCaP) including chitosan and β-glycerophosphate (Ch-β) as a matrix. Results revealed that compared to the Ch-β hydrogel without SiCaP, the presence of SiCaP particles in nanocomposite hydrogels maintained pH stability during the sol-gel transition, accelerated the gelation and improved the stiffness of nanocomposite hydrogels. Gelation time at 37℃ was reduced approximately 75% and stiffness was increased approximately 115%. Both of these changes are attributed to chemical and physical interactions of the SiCaP bioactive particles with chitosan. Furthermore, compared to the Ch-β hydrogel, the presence of SiCaP in the Ch-β/7.5SiCaP nanocomposite hydrogel did not affect biocompatibility negatively, but improved osteoblastic cell differentiation. Our studies suggest that these nanocomposite hydrogels may offer an innovative approach to bone regeneration strategies.