关于包含多项式所有零的Annuli的比较的一个注记

IF 1 Q1 MATHEMATICS
S. Hans, Amit Tomar, Jianheng Chen
{"title":"关于包含多项式所有零的Annuli的比较的一个注记","authors":"S. Hans, Amit Tomar, Jianheng Chen","doi":"10.46793/kgjmat2201.139h","DOIUrl":null,"url":null,"abstract":"If P(z) is a polynomial of degree n, then for a subclass of polynomials, Dalal and Govil [7] compared the bounds, containing all the zeros, for two different results with two different real sequences λk > 0, Pn k=1 λk = 1. In this paper, we prove a more general result, by which one can compare the bounds of two different results with the same sequence of real or complex λk, Pn k=0 ♣λk♣ ≤ 1. A variety of other results have been extended in this direction, which in particular include several known extensions and generalizations of a classical result of Cauchy [4], from this result by a fairly uniform manner.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Comparison of Annuli Containing all the Zeros of a Polynomial\",\"authors\":\"S. Hans, Amit Tomar, Jianheng Chen\",\"doi\":\"10.46793/kgjmat2201.139h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If P(z) is a polynomial of degree n, then for a subclass of polynomials, Dalal and Govil [7] compared the bounds, containing all the zeros, for two different results with two different real sequences λk > 0, Pn k=1 λk = 1. In this paper, we prove a more general result, by which one can compare the bounds of two different results with the same sequence of real or complex λk, Pn k=0 ♣λk♣ ≤ 1. A variety of other results have been extended in this direction, which in particular include several known extensions and generalizations of a classical result of Cauchy [4], from this result by a fairly uniform manner.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2201.139h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2201.139h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果P(z)是n次多项式,那么对于多项式的子类,Dalal和Govil[7]比较了两个不同结果的边界,其中包含所有零,两个不同的实序列λk>0,Pn k=1λk=1。在本文中,我们证明了一个更一般的结果,通过该结果可以比较具有相同实数或复数λk序列的两个不同结果的界,Pnk=0♣λk♣ ≤ 1.在这个方向上扩展了许多其他结果,特别是包括Cauchy[4]的一个经典结果的几个已知的扩展和推广,以一种相当一致的方式从这个结果得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Comparison of Annuli Containing all the Zeros of a Polynomial
If P(z) is a polynomial of degree n, then for a subclass of polynomials, Dalal and Govil [7] compared the bounds, containing all the zeros, for two different results with two different real sequences λk > 0, Pn k=1 λk = 1. In this paper, we prove a more general result, by which one can compare the bounds of two different results with the same sequence of real or complex λk, Pn k=0 ♣λk♣ ≤ 1. A variety of other results have been extended in this direction, which in particular include several known extensions and generalizations of a classical result of Cauchy [4], from this result by a fairly uniform manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信