局部域上曲线的Hecke算子和解析Langlands对应

IF 2.3 1区 数学 Q1 MATHEMATICS
P. Etingof, E. Frenkel, D. Kazhdan
{"title":"局部域上曲线的Hecke算子和解析Langlands对应","authors":"P. Etingof, E. Frenkel, D. Kazhdan","doi":"10.1215/00127094-2022-0068","DOIUrl":null,"url":null,"abstract":"We construct analogues of the Hecke operators for the moduli space of G-bundles on a curve X over a local field F with parabolic structures at finitely many points. We conjecture that they define commuting compact normal operators on the Hilbert space of half-densities on this moduli space. In the case F=C, we also conjecture that their joint spectrum is in a natural bijection with the set of opers on X for the Langlands dual group with real monodromy. This may be viewed as an analytic version of the Langlands correspondence for complex curves. Furthermore, we conjecture an explicit formula relating the eigenvalues of the Hecke operators and the global differential operators studied in our previous paper arXiv:1908.09677. Assuming the compactness conjecture, this formula follows from a certain system of differential equations satisfied by the Hecke operators, which we prove in this paper for G=PGL(n).","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hecke operators and analytic Langlands correspondence for curves over local fields\",\"authors\":\"P. Etingof, E. Frenkel, D. Kazhdan\",\"doi\":\"10.1215/00127094-2022-0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct analogues of the Hecke operators for the moduli space of G-bundles on a curve X over a local field F with parabolic structures at finitely many points. We conjecture that they define commuting compact normal operators on the Hilbert space of half-densities on this moduli space. In the case F=C, we also conjecture that their joint spectrum is in a natural bijection with the set of opers on X for the Langlands dual group with real monodromy. This may be viewed as an analytic version of the Langlands correspondence for complex curves. Furthermore, we conjecture an explicit formula relating the eigenvalues of the Hecke operators and the global differential operators studied in our previous paper arXiv:1908.09677. Assuming the compactness conjecture, this formula follows from a certain system of differential equations satisfied by the Hecke operators, which we prove in this paper for G=PGL(n).\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0068\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0068","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们构造了在有限多点上具有抛物结构的局部场F上的曲线X上G-丛的模空间的Hecke算子的类似物。我们猜想它们定义了模空间上半密度Hilbert空间上的可交换紧致正规算子。在F=C的情况下,我们还猜想它们的联合谱与具有实单调性的Langlands对偶群的X上的操纵子集是自然双射的。这可以被视为复杂曲线的Langlands对应关系的分析版本。此外,我们猜想了一个关于Hecke算子的本征值和我们在前一篇论文arXiv:1908.09677中研究的全局微分算子的显式公式。假设紧性猜想,这个公式来自于一个由Hecke算子满足的微分方程组,我们在本文中证明了G=PGL(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hecke operators and analytic Langlands correspondence for curves over local fields
We construct analogues of the Hecke operators for the moduli space of G-bundles on a curve X over a local field F with parabolic structures at finitely many points. We conjecture that they define commuting compact normal operators on the Hilbert space of half-densities on this moduli space. In the case F=C, we also conjecture that their joint spectrum is in a natural bijection with the set of opers on X for the Langlands dual group with real monodromy. This may be viewed as an analytic version of the Langlands correspondence for complex curves. Furthermore, we conjecture an explicit formula relating the eigenvalues of the Hecke operators and the global differential operators studied in our previous paper arXiv:1908.09677. Assuming the compactness conjecture, this formula follows from a certain system of differential equations satisfied by the Hecke operators, which we prove in this paper for G=PGL(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信