通过投影和法向截面联系流形的二阶几何

Pub Date : 2019-09-16 DOI:10.5565/publmat6512114
P. B. Riul, R. O. Sinha
{"title":"通过投影和法向截面联系流形的二阶几何","authors":"P. B. Riul, R. O. Sinha","doi":"10.5565/publmat6512114","DOIUrl":null,"url":null,"abstract":"We use normal sections to relate the curvature locus of regular (resp. singular corank 1) 3-manifolds in $\\mathbb{R}^6$ (resp. $\\mathbb R^5$) with regular (resp. singular corank 1) surfaces in $\\mathbb R^5$ (resp. $\\mathbb R^4$). For example we show how to generate a Roman surface by a family of ellipses different to Steiner's way. Furthermore, we give necessary conditions for the 2-jet of the parametrisation of a singular 3-manifold to be in a certain orbit in terms of the topological types of the curvature loci of the singular surfaces obtained as normal sections. We also study the relations between the regular and singular cases through projections. We show there is a commutative diagram of projections and normal sections which relates the curvature loci of the different types of manifolds, and therefore, that the second order geometry of all of them is related. In particular we define asymptotic directions for singular corank 1 3-manifolds in $\\mathbb R^5$ and relate them to asymptotic directions of regular 3-manifolds in $\\mathbb R^6$ and singular corank 1 surfaces in $\\mathbb R^4$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Relating second order geometry of manifolds through projections and normal sections\",\"authors\":\"P. B. Riul, R. O. Sinha\",\"doi\":\"10.5565/publmat6512114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use normal sections to relate the curvature locus of regular (resp. singular corank 1) 3-manifolds in $\\\\mathbb{R}^6$ (resp. $\\\\mathbb R^5$) with regular (resp. singular corank 1) surfaces in $\\\\mathbb R^5$ (resp. $\\\\mathbb R^4$). For example we show how to generate a Roman surface by a family of ellipses different to Steiner's way. Furthermore, we give necessary conditions for the 2-jet of the parametrisation of a singular 3-manifold to be in a certain orbit in terms of the topological types of the curvature loci of the singular surfaces obtained as normal sections. We also study the relations between the regular and singular cases through projections. We show there is a commutative diagram of projections and normal sections which relates the curvature loci of the different types of manifolds, and therefore, that the second order geometry of all of them is related. In particular we define asymptotic directions for singular corank 1 3-manifolds in $\\\\mathbb R^5$ and relate them to asymptotic directions of regular 3-manifolds in $\\\\mathbb R^6$ and singular corank 1 surfaces in $\\\\mathbb R^4$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6512114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6512114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们使用法向截面将$\mathbb{R}^6$(resp.$\mathbb R^5$)中的正则(resp.奇异corank 1)3-流形的曲率轨迹与$\mathbbR^5$[resp.$\athbb R^4$]中的正则曲面联系起来。例如,我们展示了如何通过与Steiner方法不同的椭圆族生成罗马曲面。此外,根据作为法向截面获得的奇异曲面的曲率轨迹的拓扑类型,我们给出了奇异3-流形参数化的2-喷流在特定轨道上的必要条件。我们还通过投影研究了正则和奇异情况之间的关系。我们证明了存在一个投影和法向截面的交换图,它将不同类型流形的曲率轨迹联系起来,因此,它们的二阶几何都是相关的。特别地,我们定义了$\mathbb R^5$中奇异corank 1 3-流形的渐近方向,并将它们与$\mathbb R^6$中正则3-流形和$\mathbbR^4$中奇异corank 1曲面的渐近方向联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Relating second order geometry of manifolds through projections and normal sections
We use normal sections to relate the curvature locus of regular (resp. singular corank 1) 3-manifolds in $\mathbb{R}^6$ (resp. $\mathbb R^5$) with regular (resp. singular corank 1) surfaces in $\mathbb R^5$ (resp. $\mathbb R^4$). For example we show how to generate a Roman surface by a family of ellipses different to Steiner's way. Furthermore, we give necessary conditions for the 2-jet of the parametrisation of a singular 3-manifold to be in a certain orbit in terms of the topological types of the curvature loci of the singular surfaces obtained as normal sections. We also study the relations between the regular and singular cases through projections. We show there is a commutative diagram of projections and normal sections which relates the curvature loci of the different types of manifolds, and therefore, that the second order geometry of all of them is related. In particular we define asymptotic directions for singular corank 1 3-manifolds in $\mathbb R^5$ and relate them to asymptotic directions of regular 3-manifolds in $\mathbb R^6$ and singular corank 1 surfaces in $\mathbb R^4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信