闵可夫斯基三维空间中渐开线轨迹类时直纹曲面设计的新方法

IF 0.4 Q4 MATHEMATICS
M. Bilici
{"title":"闵可夫斯基三维空间中渐开线轨迹类时直纹曲面设计的新方法","authors":"M. Bilici","doi":"10.5269/bspm.51594","DOIUrl":null,"url":null,"abstract":"In this study, we present the new concept of involute trajectory ruled surface in Minkowski 3-space. The involute trajectory timelike ruled surface is a surface generated by the motion of a timelike oriented line X along the spacelike involute curve γ(s) of a given timelike base curve r(s). The main purpose of this article is to present a new perspective on the generation of developable trajectory ruled surfaces in Minkowski 3-space. These surfaces are formed depending on the angle θ between the Darboux vector D and the binormal vector b of the evolute curve r(s). Also, some new results and theorems related to the developability of the involute trajectory timelike ruled surfaces are obtained. Finally, we illustrate these surfaces by presenting one example.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new method for designing involute trajectory timelike ruled surfaces in Minkowski 3-space\",\"authors\":\"M. Bilici\",\"doi\":\"10.5269/bspm.51594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present the new concept of involute trajectory ruled surface in Minkowski 3-space. The involute trajectory timelike ruled surface is a surface generated by the motion of a timelike oriented line X along the spacelike involute curve γ(s) of a given timelike base curve r(s). The main purpose of this article is to present a new perspective on the generation of developable trajectory ruled surfaces in Minkowski 3-space. These surfaces are formed depending on the angle θ between the Darboux vector D and the binormal vector b of the evolute curve r(s). Also, some new results and theorems related to the developability of the involute trajectory timelike ruled surfaces are obtained. Finally, we illustrate these surfaces by presenting one example.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了闵可夫斯基三维空间中渐开线轨迹直纹曲面的新概念。渐开线轨迹类时直纹曲面是由一条类时取向线X沿着给定的类时基曲线r(s)的类空间渐开线曲线γ(s)运动而产生的曲面。本文的主要目的是为闵可夫斯基三维空间中可展轨迹直纹曲面的生成提供一个新的视角。这些曲面的形成取决于演化曲线r(s)的达布向量D和二法线向量b之间的夹角θ。同时,得到了渐开线轨迹类时直纹曲面可展开性的一些新的结果和定理。最后,我们通过一个示例来说明这些表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for designing involute trajectory timelike ruled surfaces in Minkowski 3-space
In this study, we present the new concept of involute trajectory ruled surface in Minkowski 3-space. The involute trajectory timelike ruled surface is a surface generated by the motion of a timelike oriented line X along the spacelike involute curve γ(s) of a given timelike base curve r(s). The main purpose of this article is to present a new perspective on the generation of developable trajectory ruled surfaces in Minkowski 3-space. These surfaces are formed depending on the angle θ between the Darboux vector D and the binormal vector b of the evolute curve r(s). Also, some new results and theorems related to the developability of the involute trajectory timelike ruled surfaces are obtained. Finally, we illustrate these surfaces by presenting one example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信