环上置换三导的迹

Q3 Mathematics
D. Yılmaz, H. Yazarli
{"title":"环上置换三导的迹","authors":"D. Yılmaz, H. Yazarli","doi":"10.30970/ms.58.1.20-25","DOIUrl":null,"url":null,"abstract":"In the paper we examined the some effects of derivation, trace of permuting tri-derivation and endomorphism on each other in prime and semiprime ring.Let $R$ be a $2,3$-torsion free prime ring and $F:R\\times R\\times R\\rightarrow R$ be a permuting tri-derivation with trace $f$, $ d:R\\rightarrow R$ be a derivation. In particular, the following assertions have been proved:1) if $[d(r),r]=f(r)$ for all $r\\in R$, then $R$ is commutative or $d=0$ (Theorem 1);\\ \n2) if $g:R\\rightarrow R$ is an endomorphism such that $F(d(r),r,r)=g(r)$ for all $r\\in R$, then $F=0$ or $d=0$ (Theorem 2); \n3) if $F(d(r),r,r)=f(r)$ for all $r\\in R$, then $(i)$ $F=0$ or $d=0$, $(ii)$ $d(r)\\circ f(r)=0$ for all $r\\in R$ (Theorem 3). \nIn the other hand, if there exist permuting tri-derivations $F_{1},F_{2}:R\\times R\\times R\\rightarrow R$ such that $F_{1}(f_{2}(r),r,r)=f_{1}(r)$ for all $r\\in R$, where $f_{1}$ and $%f_{2}$ are traces of $F_{1}$ and $F_{2}$, respectively, then $(i)$ $F_{1}=0$ or $F_{2}=0$, $(ii)$ $f_{1}(r)\\circ f_{2}(r)=0$ for all $r\\in R$ (Theorem 4).","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the trace of permuting tri-derivations on rings\",\"authors\":\"D. Yılmaz, H. Yazarli\",\"doi\":\"10.30970/ms.58.1.20-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we examined the some effects of derivation, trace of permuting tri-derivation and endomorphism on each other in prime and semiprime ring.Let $R$ be a $2,3$-torsion free prime ring and $F:R\\\\times R\\\\times R\\\\rightarrow R$ be a permuting tri-derivation with trace $f$, $ d:R\\\\rightarrow R$ be a derivation. In particular, the following assertions have been proved:1) if $[d(r),r]=f(r)$ for all $r\\\\in R$, then $R$ is commutative or $d=0$ (Theorem 1);\\\\ \\n2) if $g:R\\\\rightarrow R$ is an endomorphism such that $F(d(r),r,r)=g(r)$ for all $r\\\\in R$, then $F=0$ or $d=0$ (Theorem 2); \\n3) if $F(d(r),r,r)=f(r)$ for all $r\\\\in R$, then $(i)$ $F=0$ or $d=0$, $(ii)$ $d(r)\\\\circ f(r)=0$ for all $r\\\\in R$ (Theorem 3). \\nIn the other hand, if there exist permuting tri-derivations $F_{1},F_{2}:R\\\\times R\\\\times R\\\\rightarrow R$ such that $F_{1}(f_{2}(r),r,r)=f_{1}(r)$ for all $r\\\\in R$, where $f_{1}$ and $%f_{2}$ are traces of $F_{1}$ and $F_{2}$, respectively, then $(i)$ $F_{1}=0$ or $F_{2}=0$, $(ii)$ $f_{1}(r)\\\\circ f_{2}(r)=0$ for all $r\\\\in R$ (Theorem 4).\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.1.20-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.20-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了素数环和半素数环上的导数、置换三导数和自同态的相互影响。设$R$是一个2,3$无扭素环,$F:R\乘以R\右列R$是一个有迹$F $的置换三重导数,$ d:R\右列R$是一个导数。特别地,证明了下列断言:1)如果$[d(r),r]=f(r)$对于r $中的所有$r\是交换的或$d=0$(定理1);2)如果$g: r\右列r $是自同态使得$ f(d(r),r,r)=g(r)$对于r $中的所有$r\是自同态,则$ f =0$或$d=0$(定理2);3)如果$ F (d (r), r, r) = F (r) $ r \ r美元,然后(i) $ F = 0美元或美元d = 0美元,美元(ii) $ $ d (r) \保监会F (r) = 0中所有$ r \ r美元(定理3)。在另一方面,如果存在交换tri-derivations $ F {1}, F{2}: \乘以r \ r \ rightarrow r F {1} $, $ (F {2} (r), r, r) = F {1} (r)为所有r \ r美元,美元$ F{1} $和$ % F {2} $ $ F{1} $的痕迹和F{2},美元,那么美元(i) $ $ F {1} = 0 F{2} = 0美元或美元,美元(ii) $ $ F {1} (r) F{2} \保监会(r) = 0中所有$ r \ r美元(定理4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the trace of permuting tri-derivations on rings
In the paper we examined the some effects of derivation, trace of permuting tri-derivation and endomorphism on each other in prime and semiprime ring.Let $R$ be a $2,3$-torsion free prime ring and $F:R\times R\times R\rightarrow R$ be a permuting tri-derivation with trace $f$, $ d:R\rightarrow R$ be a derivation. In particular, the following assertions have been proved:1) if $[d(r),r]=f(r)$ for all $r\in R$, then $R$ is commutative or $d=0$ (Theorem 1);\ 2) if $g:R\rightarrow R$ is an endomorphism such that $F(d(r),r,r)=g(r)$ for all $r\in R$, then $F=0$ or $d=0$ (Theorem 2); 3) if $F(d(r),r,r)=f(r)$ for all $r\in R$, then $(i)$ $F=0$ or $d=0$, $(ii)$ $d(r)\circ f(r)=0$ for all $r\in R$ (Theorem 3). In the other hand, if there exist permuting tri-derivations $F_{1},F_{2}:R\times R\times R\rightarrow R$ such that $F_{1}(f_{2}(r),r,r)=f_{1}(r)$ for all $r\in R$, where $f_{1}$ and $%f_{2}$ are traces of $F_{1}$ and $F_{2}$, respectively, then $(i)$ $F_{1}=0$ or $F_{2}=0$, $(ii)$ $f_{1}(r)\circ f_{2}(r)=0$ for all $r\in R$ (Theorem 4).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信