用广义prele - singer方法求解复域三阶非线性常微分方程的研究

IF 1.4 Q2 MATHEMATICS, APPLIED
Ali K. Joohy, Ghassan A. Al-Juaifri, M. Mechee
{"title":"用广义prele - singer方法求解复域三阶非线性常微分方程的研究","authors":"Ali K. Joohy, Ghassan A. Al-Juaifri, M. Mechee","doi":"10.1155/2020/5276024","DOIUrl":null,"url":null,"abstract":"A method to solve a family of third-order nonlinear ordinary complex differential equations (NLOCDEs) —nonlinear ODEs in the complex plane—by generalizing Prelle–Singer has been developed. The approach that the authors generalized is a procedure of obtaining a solution to a kind of second-order nonlinear ODEs in the real line. Some theoretical work has been illustrated and applied to several examples. Also, an extended technique of generating second and third motion integrals in the complex domain has been introduced, which is conceptually an analog to the motion in the real line. Moreover, the procedures of the method mentioned above have been verified.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/5276024","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Solving Third-Order Nonlinear Ordinary Differential Equation in Complex Domain by Generalising Prelle–Singer Method\",\"authors\":\"Ali K. Joohy, Ghassan A. Al-Juaifri, M. Mechee\",\"doi\":\"10.1155/2020/5276024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method to solve a family of third-order nonlinear ordinary complex differential equations (NLOCDEs) —nonlinear ODEs in the complex plane—by generalizing Prelle–Singer has been developed. The approach that the authors generalized is a procedure of obtaining a solution to a kind of second-order nonlinear ODEs in the real line. Some theoretical work has been illustrated and applied to several examples. Also, an extended technique of generating second and third motion integrals in the complex domain has been introduced, which is conceptually an analog to the motion in the real line. Moreover, the procedures of the method mentioned above have been verified.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/5276024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/5276024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5276024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过推广Prelle–Singer,提出了一种求解一类三阶非线性常复微分方程(NLOCDE)的方法——复平面上的非线性常微分方程。作者推广的方法是在实直线上求解一类二阶非线性常微分方程的一个过程。一些理论工作已经被举例说明并应用到几个例子中。此外,还介绍了一种在复域中生成第二和第三运动积分的扩展技术,该技术在概念上类似于实直线中的运动。此外,上述方法的程序已经得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Investigation of Solving Third-Order Nonlinear Ordinary Differential Equation in Complex Domain by Generalising Prelle–Singer Method
A method to solve a family of third-order nonlinear ordinary complex differential equations (NLOCDEs) —nonlinear ODEs in the complex plane—by generalizing Prelle–Singer has been developed. The approach that the authors generalized is a procedure of obtaining a solution to a kind of second-order nonlinear ODEs in the real line. Some theoretical work has been illustrated and applied to several examples. Also, an extended technique of generating second and third motion integrals in the complex domain has been introduced, which is conceptually an analog to the motion in the real line. Moreover, the procedures of the method mentioned above have been verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信