{"title":"江南造山带新元古代富川蛇绿岩杂岩中两种辉长岩的成因:对日本似海弧后盆地的启示","authors":"Wentao Hong, Minggang Yu, Zhentao Song, Pingli Chu, Kai Liu, Xiaohua Zhou","doi":"10.1111/iar.12465","DOIUrl":null,"url":null,"abstract":"<p>The Neoproterozoic Fuchuan ophiolite complex (FCO) represents the lithospheric remnant of the back-arc basin in the southeastern margin of the Yangtze Craton. However, the nature and development of this back-arc system are still confusing. This study focuses on the tholeiitic gabbros in the FCO, which can be divided into enriched and depleted types according to their geochemical characteristics. Enriched gabbros (843 ± 5 Ma) in the FCO are characterized by left-sloping rare earth element (REE) patterns and relatively low ε<sub>Hf</sub>(t) (mostly in the range of 4.6–7.8). In contrast, depleted gabbros are slightly younger (838 ± 5 Ma) and isotopically more depleted (ε<sub>Hf</sub>(t) mostly in 7.7–11.8) than enriched gabbros, exhibiting flat REE patterns. Based on geochemical variations and numerical modeling, the primary magmas of enriched gabbros were generated by a low degree (~14 %) partial melting of the melt-modified depleted mantle. In contrast, the more depleted isotopic composition and variable Ba/Th and V/Yb ratios of depleted gabbros suggest that their magmas have originated from a higher degree (~14–26 %) partial melting of the fluid-modified residual depleted mantle. Considering that the most ~860–830 Ma magmatism in the eastern Jiangnan Orogen is calc-alkaline, the Neoproterozoic back-arc basin where the FCO formed could be sialic and built on the thinning continental crust, resembling the Japan Sea. The occurrences of tholeiitic gabbros in the FCO thus provide crucial insights into the opening of the back-arc basin in the southeastern margin of the Yangtze Craton. The changes of mantle source nature and metasomatic agent reflect the upwelling of the depleted asthenosphere and oceanward retreading of the continental arc during the back-arc opening. Consequently, the early continental arc in the southeastern Yangtze Craton may have been transformed into a new island arc, resembling the formation of the northeast Honshu arc during the Miocene.</p>","PeriodicalId":14791,"journal":{"name":"Island Arc","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Petrogenesis of two types of gabbro from Neoproterozoic Fuchuan ophiolite complex, Jiangnan Orogen: Implication for a Japan Sea-like back-arc basin\",\"authors\":\"Wentao Hong, Minggang Yu, Zhentao Song, Pingli Chu, Kai Liu, Xiaohua Zhou\",\"doi\":\"10.1111/iar.12465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Neoproterozoic Fuchuan ophiolite complex (FCO) represents the lithospheric remnant of the back-arc basin in the southeastern margin of the Yangtze Craton. However, the nature and development of this back-arc system are still confusing. This study focuses on the tholeiitic gabbros in the FCO, which can be divided into enriched and depleted types according to their geochemical characteristics. Enriched gabbros (843 ± 5 Ma) in the FCO are characterized by left-sloping rare earth element (REE) patterns and relatively low ε<sub>Hf</sub>(t) (mostly in the range of 4.6–7.8). In contrast, depleted gabbros are slightly younger (838 ± 5 Ma) and isotopically more depleted (ε<sub>Hf</sub>(t) mostly in 7.7–11.8) than enriched gabbros, exhibiting flat REE patterns. Based on geochemical variations and numerical modeling, the primary magmas of enriched gabbros were generated by a low degree (~14 %) partial melting of the melt-modified depleted mantle. In contrast, the more depleted isotopic composition and variable Ba/Th and V/Yb ratios of depleted gabbros suggest that their magmas have originated from a higher degree (~14–26 %) partial melting of the fluid-modified residual depleted mantle. Considering that the most ~860–830 Ma magmatism in the eastern Jiangnan Orogen is calc-alkaline, the Neoproterozoic back-arc basin where the FCO formed could be sialic and built on the thinning continental crust, resembling the Japan Sea. The occurrences of tholeiitic gabbros in the FCO thus provide crucial insights into the opening of the back-arc basin in the southeastern margin of the Yangtze Craton. The changes of mantle source nature and metasomatic agent reflect the upwelling of the depleted asthenosphere and oceanward retreading of the continental arc during the back-arc opening. Consequently, the early continental arc in the southeastern Yangtze Craton may have been transformed into a new island arc, resembling the formation of the northeast Honshu arc during the Miocene.</p>\",\"PeriodicalId\":14791,\"journal\":{\"name\":\"Island Arc\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Island Arc\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iar.12465\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Island Arc","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iar.12465","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Petrogenesis of two types of gabbro from Neoproterozoic Fuchuan ophiolite complex, Jiangnan Orogen: Implication for a Japan Sea-like back-arc basin
The Neoproterozoic Fuchuan ophiolite complex (FCO) represents the lithospheric remnant of the back-arc basin in the southeastern margin of the Yangtze Craton. However, the nature and development of this back-arc system are still confusing. This study focuses on the tholeiitic gabbros in the FCO, which can be divided into enriched and depleted types according to their geochemical characteristics. Enriched gabbros (843 ± 5 Ma) in the FCO are characterized by left-sloping rare earth element (REE) patterns and relatively low εHf(t) (mostly in the range of 4.6–7.8). In contrast, depleted gabbros are slightly younger (838 ± 5 Ma) and isotopically more depleted (εHf(t) mostly in 7.7–11.8) than enriched gabbros, exhibiting flat REE patterns. Based on geochemical variations and numerical modeling, the primary magmas of enriched gabbros were generated by a low degree (~14 %) partial melting of the melt-modified depleted mantle. In contrast, the more depleted isotopic composition and variable Ba/Th and V/Yb ratios of depleted gabbros suggest that their magmas have originated from a higher degree (~14–26 %) partial melting of the fluid-modified residual depleted mantle. Considering that the most ~860–830 Ma magmatism in the eastern Jiangnan Orogen is calc-alkaline, the Neoproterozoic back-arc basin where the FCO formed could be sialic and built on the thinning continental crust, resembling the Japan Sea. The occurrences of tholeiitic gabbros in the FCO thus provide crucial insights into the opening of the back-arc basin in the southeastern margin of the Yangtze Craton. The changes of mantle source nature and metasomatic agent reflect the upwelling of the depleted asthenosphere and oceanward retreading of the continental arc during the back-arc opening. Consequently, the early continental arc in the southeastern Yangtze Craton may have been transformed into a new island arc, resembling the formation of the northeast Honshu arc during the Miocene.
期刊介绍:
Island Arc is the official journal of the Geological Society of Japan. This journal focuses on the structure, dynamics and evolution of convergent plate boundaries, including trenches, volcanic arcs, subducting plates, and both accretionary and collisional orogens in modern and ancient settings. The Journal also opens to other key geological processes and features of broad interest such as oceanic basins, mid-ocean ridges, hot spots, continental cratons, and their surfaces and roots. Papers that discuss the interaction between solid earth, atmosphere, and bodies of water are also welcome. Articles of immediate importance to other researchers, either by virtue of their new data, results or ideas are given priority publication.
Island Arc publishes peer-reviewed articles and reviews. Original scientific articles, of a maximum length of 15 printed pages, are published promptly with a standard publication time from submission of 3 months. All articles are peer reviewed by at least two research experts in the field of the submitted paper.