{"title":"基于短时奇异谱分析的平面波最小二乘衍射成像","authors":"Yalin Li, Jianping Huang, Ganglin Lei, Wensheng Duan, Cheng Song, Xinwen Zhang","doi":"10.1093/jge/gxad021","DOIUrl":null,"url":null,"abstract":"\n Diffractions are seismic waves generated by small-scale heterogeneities in the subsurface. These are often superimposed by strong reflections so that they are not visible on the image, leading to misinterpretation and incorrect localization of the scatterers. Therefore, the separation of diffracted and reflected waves is a crucial step in identifying these small-scale diffractors. To realize the separation of diffraction and imaging, a least-squares reverse time migration method of plane-waves (PLSRTM) optimized with short time singular spectrum analysis (STSSA) was developed in this work. The proposed STSSA algorithm exploits the properties of singular spectral analysis (SSA) to separate linear signals. By establishing the Hanning window and the energy compensation function, it also compensates for the shortcomings of SSA in local dip processing and convergence of linear signals. Since there is no clear boundary between reflected and diffracted waves, the energy loss during separation leads to a slow convergence rate of the diffraction wave imaging technique. We use STSSA as a constraint for PLSRTM, which greatly improves the imaging quality for diffraction waves. The tests with the SIGSBEE model and noisy seismic data have shown that our method can effectively improve the resolution of diffraction wave imaging and that the constraint of STSSA increases the robustness to noisy data.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plane-wave Least-squares Diffraction Imaging using Short-time Singular Spectrum Analysis\",\"authors\":\"Yalin Li, Jianping Huang, Ganglin Lei, Wensheng Duan, Cheng Song, Xinwen Zhang\",\"doi\":\"10.1093/jge/gxad021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Diffractions are seismic waves generated by small-scale heterogeneities in the subsurface. These are often superimposed by strong reflections so that they are not visible on the image, leading to misinterpretation and incorrect localization of the scatterers. Therefore, the separation of diffracted and reflected waves is a crucial step in identifying these small-scale diffractors. To realize the separation of diffraction and imaging, a least-squares reverse time migration method of plane-waves (PLSRTM) optimized with short time singular spectrum analysis (STSSA) was developed in this work. The proposed STSSA algorithm exploits the properties of singular spectral analysis (SSA) to separate linear signals. By establishing the Hanning window and the energy compensation function, it also compensates for the shortcomings of SSA in local dip processing and convergence of linear signals. Since there is no clear boundary between reflected and diffracted waves, the energy loss during separation leads to a slow convergence rate of the diffraction wave imaging technique. We use STSSA as a constraint for PLSRTM, which greatly improves the imaging quality for diffraction waves. The tests with the SIGSBEE model and noisy seismic data have shown that our method can effectively improve the resolution of diffraction wave imaging and that the constraint of STSSA increases the robustness to noisy data.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad021\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad021","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Plane-wave Least-squares Diffraction Imaging using Short-time Singular Spectrum Analysis
Diffractions are seismic waves generated by small-scale heterogeneities in the subsurface. These are often superimposed by strong reflections so that they are not visible on the image, leading to misinterpretation and incorrect localization of the scatterers. Therefore, the separation of diffracted and reflected waves is a crucial step in identifying these small-scale diffractors. To realize the separation of diffraction and imaging, a least-squares reverse time migration method of plane-waves (PLSRTM) optimized with short time singular spectrum analysis (STSSA) was developed in this work. The proposed STSSA algorithm exploits the properties of singular spectral analysis (SSA) to separate linear signals. By establishing the Hanning window and the energy compensation function, it also compensates for the shortcomings of SSA in local dip processing and convergence of linear signals. Since there is no clear boundary between reflected and diffracted waves, the energy loss during separation leads to a slow convergence rate of the diffraction wave imaging technique. We use STSSA as a constraint for PLSRTM, which greatly improves the imaging quality for diffraction waves. The tests with the SIGSBEE model and noisy seismic data have shown that our method can effectively improve the resolution of diffraction wave imaging and that the constraint of STSSA increases the robustness to noisy data.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.