$E_n$Jacobi形式与Seiberg–Witten曲线

IF 1.2 3区 数学 Q1 MATHEMATICS
K. Sakai
{"title":"$E_n$Jacobi形式与Seiberg–Witten曲线","authors":"K. Sakai","doi":"10.4310/CNTP.2019.v13.n1.a2","DOIUrl":null,"url":null,"abstract":"We discuss Jacobi forms that are invariant under the action of the Weyl group of type E_n (n=6,7,8). For n=6,7 we explicitly construct a full set of generators of the algebra of E_n weak Jacobi forms. We first construct n+1 independent E_n Jacobi forms in terms of Jacobi theta functions and modular forms. By using them we obtain Seiberg-Witten curves of type E_6 and E_7 for the E-string theory. The coefficients of each curve are E_n weak Jacobi forms of particular weights and indices specified by the root system, realizing the generators whose existence was shown some time ago by Wirthm\\\"uller.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"$E_n$ Jacobi forms and Seiberg–Witten curves\",\"authors\":\"K. Sakai\",\"doi\":\"10.4310/CNTP.2019.v13.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss Jacobi forms that are invariant under the action of the Weyl group of type E_n (n=6,7,8). For n=6,7 we explicitly construct a full set of generators of the algebra of E_n weak Jacobi forms. We first construct n+1 independent E_n Jacobi forms in terms of Jacobi theta functions and modular forms. By using them we obtain Seiberg-Witten curves of type E_6 and E_7 for the E-string theory. The coefficients of each curve are E_n weak Jacobi forms of particular weights and indices specified by the root system, realizing the generators whose existence was shown some time ago by Wirthm\\\\\\\"uller.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2019.v13.n1.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.v13.n1.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

讨论了E_n (n=6,7,8)型Weyl群作用下的Jacobi型不变量。对于n=6,7,我们显式构造了E_n弱Jacobi形式代数的完整生成集。我们首先用雅可比函数和模形式构造n+1个独立的E_n雅可比形式。利用它们,我们得到了e弦理论的E_6型和E_7型Seiberg-Witten曲线。每条曲线的系数都是由根系指定的特定权值和指标的E_n个弱雅可比形式,实现了Wirthm\ uller在前段时间所证明的产生子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$E_n$ Jacobi forms and Seiberg–Witten curves
We discuss Jacobi forms that are invariant under the action of the Weyl group of type E_n (n=6,7,8). For n=6,7 we explicitly construct a full set of generators of the algebra of E_n weak Jacobi forms. We first construct n+1 independent E_n Jacobi forms in terms of Jacobi theta functions and modular forms. By using them we obtain Seiberg-Witten curves of type E_6 and E_7 for the E-string theory. The coefficients of each curve are E_n weak Jacobi forms of particular weights and indices specified by the root system, realizing the generators whose existence was shown some time ago by Wirthm\"uller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信