论度量平均维数的局域性

Pub Date : 2021-03-08 DOI:10.2206/kyushujm.76.143
M. Tsukamoto
{"title":"论度量平均维数的局域性","authors":"M. Tsukamoto","doi":"10.2206/kyushujm.76.143","DOIUrl":null,"url":null,"abstract":"Metric mean dimension is a metric invariant of dynamical systems. It is a dynamical analogue of Minkowski dimension of metric spaces. We explain that old ideas of Bowen (1972) can be used for clarifying the local nature of metric mean dimension. We also explain the generalization to R-actions and an illustrating example.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"REMARK ON THE LOCAL NATURE OF METRIC MEAN DIMENSION\",\"authors\":\"M. Tsukamoto\",\"doi\":\"10.2206/kyushujm.76.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metric mean dimension is a metric invariant of dynamical systems. It is a dynamical analogue of Minkowski dimension of metric spaces. We explain that old ideas of Bowen (1972) can be used for clarifying the local nature of metric mean dimension. We also explain the generalization to R-actions and an illustrating example.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

度量平均维数是动力系统的度量不变量。它是度量空间的Minkowski维数的动力学模拟。我们解释了Bowen(1972)的旧思想可以用来澄清度量平均维数的局部性质。我们还解释了对R-动作的推广,并举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
REMARK ON THE LOCAL NATURE OF METRIC MEAN DIMENSION
Metric mean dimension is a metric invariant of dynamical systems. It is a dynamical analogue of Minkowski dimension of metric spaces. We explain that old ideas of Bowen (1972) can be used for clarifying the local nature of metric mean dimension. We also explain the generalization to R-actions and an illustrating example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信