{"title":"论度量平均维数的局域性","authors":"M. Tsukamoto","doi":"10.2206/kyushujm.76.143","DOIUrl":null,"url":null,"abstract":"Metric mean dimension is a metric invariant of dynamical systems. It is a dynamical analogue of Minkowski dimension of metric spaces. We explain that old ideas of Bowen (1972) can be used for clarifying the local nature of metric mean dimension. We also explain the generalization to R-actions and an illustrating example.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"REMARK ON THE LOCAL NATURE OF METRIC MEAN DIMENSION\",\"authors\":\"M. Tsukamoto\",\"doi\":\"10.2206/kyushujm.76.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metric mean dimension is a metric invariant of dynamical systems. It is a dynamical analogue of Minkowski dimension of metric spaces. We explain that old ideas of Bowen (1972) can be used for clarifying the local nature of metric mean dimension. We also explain the generalization to R-actions and an illustrating example.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2206/kyushujm.76.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
REMARK ON THE LOCAL NATURE OF METRIC MEAN DIMENSION
Metric mean dimension is a metric invariant of dynamical systems. It is a dynamical analogue of Minkowski dimension of metric spaces. We explain that old ideas of Bowen (1972) can be used for clarifying the local nature of metric mean dimension. We also explain the generalization to R-actions and an illustrating example.