{"title":"一组资产收益的相关性度量","authors":"Dilip B. Madan, King Wang","doi":"10.1007/s10690-022-09378-4","DOIUrl":null,"url":null,"abstract":"<div><p>An index measuring the degree of dependence in a set of asset returns is defined as the ratio of an equivalent number of independent assets to the number of assets. The equivalence is based on either attaining the same optimized value enhancement or spread reduction. The value enhancement is the difference in value of a value maximizing portfolio and the maximum value delivered by the components. The spread reduction is the percentage reduction attained by a spread minimizing portfolio relative to the smallest spread for the components. Asset values or bid and ask prices of portfolios, are modeled by conservative valuation operators from the theory of two price economies. The dependence indices fall with the number of assets in the portfolio and they are explained by a measure of concentration applied to normalized eigenvalues of the correlation matrix along with the average level of correlation, the level of the (Rudin and Morgan, 2006) portfolio diversification index and the number of assets in the portfolio. A time series of the indices constructed on the basis of the <span>\\( S \\& P\\)</span> 500 index and the nine sector ETF’s reveals a collapse during the financial crisis with no recovery until 2016, with a peak in February 2020 and a COVID crash in March of 2020. Furthermore, factor dependence benefits are richer than those found in equity indices. Dependence benefits across global indices are not as strong as dependence benefits across an equal number of domestic assets, but they rise substantially for longer horizons of up to three years.</p></div>","PeriodicalId":54095,"journal":{"name":"Asia-Pacific Financial Markets","volume":"30 2","pages":"363 - 385"},"PeriodicalIF":2.5000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Dependence in a Set of Asset Returns\",\"authors\":\"Dilip B. Madan, King Wang\",\"doi\":\"10.1007/s10690-022-09378-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An index measuring the degree of dependence in a set of asset returns is defined as the ratio of an equivalent number of independent assets to the number of assets. The equivalence is based on either attaining the same optimized value enhancement or spread reduction. The value enhancement is the difference in value of a value maximizing portfolio and the maximum value delivered by the components. The spread reduction is the percentage reduction attained by a spread minimizing portfolio relative to the smallest spread for the components. Asset values or bid and ask prices of portfolios, are modeled by conservative valuation operators from the theory of two price economies. The dependence indices fall with the number of assets in the portfolio and they are explained by a measure of concentration applied to normalized eigenvalues of the correlation matrix along with the average level of correlation, the level of the (Rudin and Morgan, 2006) portfolio diversification index and the number of assets in the portfolio. A time series of the indices constructed on the basis of the <span>\\\\( S \\\\& P\\\\)</span> 500 index and the nine sector ETF’s reveals a collapse during the financial crisis with no recovery until 2016, with a peak in February 2020 and a COVID crash in March of 2020. Furthermore, factor dependence benefits are richer than those found in equity indices. Dependence benefits across global indices are not as strong as dependence benefits across an equal number of domestic assets, but they rise substantially for longer horizons of up to three years.</p></div>\",\"PeriodicalId\":54095,\"journal\":{\"name\":\"Asia-Pacific Financial Markets\",\"volume\":\"30 2\",\"pages\":\"363 - 385\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Financial Markets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10690-022-09378-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Financial Markets","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10690-022-09378-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
摘要
衡量一组资产收益的依赖程度的指标被定义为相等数量的独立资产与资产数量的比率。等效性是基于获得相同的优化值增强或分散减少。价值增强是价值最大化组合的价值与组件交付的最大价值之间的差异。息差减少是息差最小化投资组合相对于各组成部分的最小息差所获得的百分比减少。资产价值或投资组合的买入价和卖出价,由来自两种价格经济理论的保守估值算子建模。依赖指数随着投资组合中资产的数量而下降,它们可以通过应用于相关矩阵的归一化特征值以及平均相关水平、(Rudin和Morgan, 2006)投资组合多样化指数水平和投资组合中的资产数量的集中程度来解释。基于\( S \& P\) 500指数和9个行业ETF构建的指数时间序列显示,在金融危机期间出现了崩盘,直到2016年才出现复苏,在2020年2月达到峰值,在2020年3月出现COVID崩溃。此外,因子依赖效益比股票指数更丰富。全球指数的依赖收益不如同等数量的国内资产的依赖收益那么强,但在长达3年的较长期限内,它们会大幅上升。
An index measuring the degree of dependence in a set of asset returns is defined as the ratio of an equivalent number of independent assets to the number of assets. The equivalence is based on either attaining the same optimized value enhancement or spread reduction. The value enhancement is the difference in value of a value maximizing portfolio and the maximum value delivered by the components. The spread reduction is the percentage reduction attained by a spread minimizing portfolio relative to the smallest spread for the components. Asset values or bid and ask prices of portfolios, are modeled by conservative valuation operators from the theory of two price economies. The dependence indices fall with the number of assets in the portfolio and they are explained by a measure of concentration applied to normalized eigenvalues of the correlation matrix along with the average level of correlation, the level of the (Rudin and Morgan, 2006) portfolio diversification index and the number of assets in the portfolio. A time series of the indices constructed on the basis of the \( S \& P\) 500 index and the nine sector ETF’s reveals a collapse during the financial crisis with no recovery until 2016, with a peak in February 2020 and a COVID crash in March of 2020. Furthermore, factor dependence benefits are richer than those found in equity indices. Dependence benefits across global indices are not as strong as dependence benefits across an equal number of domestic assets, but they rise substantially for longer horizons of up to three years.
期刊介绍:
The current remarkable growth in the Asia-Pacific financial markets is certain to continue. These markets are expected to play a further important role in the world capital markets for investment and risk management. In accordance with this development, Asia-Pacific Financial Markets (formerly Financial Engineering and the Japanese Markets), the official journal of the Japanese Association of Financial Econometrics and Engineering (JAFEE), is expected to provide an international forum for researchers and practitioners in academia, industry, and government, who engage in empirical and/or theoretical research into the financial markets. We invite submission of quality papers on all aspects of finance and financial engineering.
Here we interpret the term ''financial engineering'' broadly enough to cover such topics as financial time series, portfolio analysis, global asset allocation, trading strategy for investment, optimization methods, macro monetary economic analysis and pricing models for various financial assets including derivatives We stress that purely theoretical papers, as well as empirical studies that use Asia-Pacific market data, are welcome.
Officially cited as: Asia-Pac Financ Markets