基于CNN-SVM的EHA故障诊断算法研究

Q3 Engineering
Xudong Li, Yanjun Li, Yuyuan Cao, Xingye Wang, Shixuan Duan, Zejian Zhao
{"title":"基于CNN-SVM的EHA故障诊断算法研究","authors":"Xudong Li, Yanjun Li, Yuyuan Cao, Xingye Wang, Shixuan Duan, Zejian Zhao","doi":"10.1051/jnwpu/20234110230","DOIUrl":null,"url":null,"abstract":"Contrapose the highly integrated, complex working conditions and many kinds of faults of aircraft electro hydrostatic actuator(EHA), to diagnose the typical fault of EHA effectively, a fault diagnosis algorithm based on convolutional neural networks (CNN) and support vector machine(SVM) was proposed. Firstly, the fault date sets are entered on CNN for adaptive feature extraction, then the output of the fully connected layer of CNN are classified by using SVM. To improve the performance of SVM, dynamic inertia weight adaptive particle swarm optimization (IWAPSO) was used to optimize the SVM parameters. Finally, the sensitivity of SVM to noise was reduced by introducing ramp loss function. The results show that the accuracy of SVM after parameter optimization is 12.6% higher than that of standard SVM and 17.3% higher than CNN. The SVM based on the ramp loss function showed better robustness when using noisy test sets.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on fault diagnosis algorithms of EHA based on CNN-SVM\",\"authors\":\"Xudong Li, Yanjun Li, Yuyuan Cao, Xingye Wang, Shixuan Duan, Zejian Zhao\",\"doi\":\"10.1051/jnwpu/20234110230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrapose the highly integrated, complex working conditions and many kinds of faults of aircraft electro hydrostatic actuator(EHA), to diagnose the typical fault of EHA effectively, a fault diagnosis algorithm based on convolutional neural networks (CNN) and support vector machine(SVM) was proposed. Firstly, the fault date sets are entered on CNN for adaptive feature extraction, then the output of the fully connected layer of CNN are classified by using SVM. To improve the performance of SVM, dynamic inertia weight adaptive particle swarm optimization (IWAPSO) was used to optimize the SVM parameters. Finally, the sensitivity of SVM to noise was reduced by introducing ramp loss function. The results show that the accuracy of SVM after parameter optimization is 12.6% higher than that of standard SVM and 17.3% higher than CNN. The SVM based on the ramp loss function showed better robustness when using noisy test sets.\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20234110230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20234110230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

针对飞机电静液作动器(EHA)高度集成、工作条件复杂、故障种类繁多的特点,提出了一种基于卷积神经网络(CNN)和支持向量机(SVM)的故障诊断算法。首先在CNN上输入故障数据集进行自适应特征提取,然后利用支持向量机对CNN的全连接层输出进行分类。为了提高支持向量机的性能,采用动态惯性权重自适应粒子群算法(IWAPSO)优化支持向量机参数。最后,通过引入斜坡损失函数来降低支持向量机对噪声的敏感性。结果表明,参数优化后的SVM准确率比标准SVM高12.6%,比CNN高17.3%。基于斜坡损失函数的支持向量机在使用噪声测试集时具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on fault diagnosis algorithms of EHA based on CNN-SVM
Contrapose the highly integrated, complex working conditions and many kinds of faults of aircraft electro hydrostatic actuator(EHA), to diagnose the typical fault of EHA effectively, a fault diagnosis algorithm based on convolutional neural networks (CNN) and support vector machine(SVM) was proposed. Firstly, the fault date sets are entered on CNN for adaptive feature extraction, then the output of the fully connected layer of CNN are classified by using SVM. To improve the performance of SVM, dynamic inertia weight adaptive particle swarm optimization (IWAPSO) was used to optimize the SVM parameters. Finally, the sensitivity of SVM to noise was reduced by introducing ramp loss function. The results show that the accuracy of SVM after parameter optimization is 12.6% higher than that of standard SVM and 17.3% higher than CNN. The SVM based on the ramp loss function showed better robustness when using noisy test sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信