分形环境中的有限点配置和正则值定理

IF 1.2 2区 数学 Q1 MATHEMATICS
Yumeng Ou, K. Taylor
{"title":"分形环境中的有限点配置和正则值定理","authors":"Yumeng Ou, K. Taylor","doi":"10.1512/iumj.2022.71.9054","DOIUrl":null,"url":null,"abstract":"In this article, we study two problems concerning the size of the set of finite point configurations generated by a compact set $E\\subset \\mathbb{R}^d$. The first problem concerns how the Lebesgue measure or the Hausdorff dimension of the finite point configuration set depends on that of $E$. In particular, we show that if a planar set has dimension exceeding $\\frac{5}{4}$, then there exists a point $x\\in E$ so that for each integer $k\\geq2$, the set of \"$k$-chains\" has positive Lebesgue measure. \nThe second problem is a continuous analogue of the Erdős unit distance problem, which aims to determine the maximum number of times a point configuration with prescribed gaps can appear in $E$. For instance, given a triangle with prescribed sides and given a sufficiently regular planar set $E$ with Hausdorff dimension no less than $\\frac{7}{4}$, we show that the dimension of the set of vertices in $E$ forming said triangle does not exceed $3\\,{\\rm dim}_H (E)-3$. In addition to the Euclidean norm, we consider more general distances given by functions satisfying the so-called Phong-Stein rotational curvature condition. We also explore a number of examples to demonstrate the extent to which our results are sharp.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Finite point configurations and the regular value theorem in a fractal setting\",\"authors\":\"Yumeng Ou, K. Taylor\",\"doi\":\"10.1512/iumj.2022.71.9054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study two problems concerning the size of the set of finite point configurations generated by a compact set $E\\\\subset \\\\mathbb{R}^d$. The first problem concerns how the Lebesgue measure or the Hausdorff dimension of the finite point configuration set depends on that of $E$. In particular, we show that if a planar set has dimension exceeding $\\\\frac{5}{4}$, then there exists a point $x\\\\in E$ so that for each integer $k\\\\geq2$, the set of \\\"$k$-chains\\\" has positive Lebesgue measure. \\nThe second problem is a continuous analogue of the Erdős unit distance problem, which aims to determine the maximum number of times a point configuration with prescribed gaps can appear in $E$. For instance, given a triangle with prescribed sides and given a sufficiently regular planar set $E$ with Hausdorff dimension no less than $\\\\frac{7}{4}$, we show that the dimension of the set of vertices in $E$ forming said triangle does not exceed $3\\\\,{\\\\rm dim}_H (E)-3$. In addition to the Euclidean norm, we consider more general distances given by functions satisfying the so-called Phong-Stein rotational curvature condition. We also explore a number of examples to demonstrate the extent to which our results are sharp.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2022.71.9054\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9054","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们研究了关于紧致集$E\subet\mathbb{R}^d$生成的有限点配置集的大小的两个问题。第一个问题涉及有限点配置集的Lebesgue测度或Hausdorff维数如何依赖于$E$。特别地,我们证明了如果平面集的维数超过$\frac{5}{4}$,那么E$中存在一个点$x\,使得对于每个整数$k\geq2$,“$k$-链”的集合具有正Lebesgue测度。第二个问题是埃尔德单位距离问题的连续模拟,该问题旨在确定具有规定间隙的点配置在$E$中出现的最大次数。例如,给定一个具有规定边的三角形,并且给定一个Hausdorff维数不小于$\frac{7}{4}$的充分正则平面集$E$,我们证明了形成所述三角形的$E$中的顶点集的维数不超过$3\,{\rm dim}_H(E)-3$。除了欧几里得范数之外,我们还考虑了由满足所谓Phong-Stein旋转曲率条件的函数给出的更一般的距离。我们还探索了一些例子来证明我们的结果在多大程度上是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite point configurations and the regular value theorem in a fractal setting
In this article, we study two problems concerning the size of the set of finite point configurations generated by a compact set $E\subset \mathbb{R}^d$. The first problem concerns how the Lebesgue measure or the Hausdorff dimension of the finite point configuration set depends on that of $E$. In particular, we show that if a planar set has dimension exceeding $\frac{5}{4}$, then there exists a point $x\in E$ so that for each integer $k\geq2$, the set of "$k$-chains" has positive Lebesgue measure. The second problem is a continuous analogue of the Erdős unit distance problem, which aims to determine the maximum number of times a point configuration with prescribed gaps can appear in $E$. For instance, given a triangle with prescribed sides and given a sufficiently regular planar set $E$ with Hausdorff dimension no less than $\frac{7}{4}$, we show that the dimension of the set of vertices in $E$ forming said triangle does not exceed $3\,{\rm dim}_H (E)-3$. In addition to the Euclidean norm, we consider more general distances given by functions satisfying the so-called Phong-Stein rotational curvature condition. We also explore a number of examples to demonstrate the extent to which our results are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信