Sima Das , Arpan Adhikary , Asif Ali Laghari , Solanki Mitra
{"title":"Eldo-Care:基于Kinect传感器的脑电图,用于残疾人和老年人的远程医疗","authors":"Sima Das , Arpan Adhikary , Asif Ali Laghari , Solanki Mitra","doi":"10.1016/j.neuri.2023.100130","DOIUrl":null,"url":null,"abstract":"<div><p>Telehealthcare systems are nowadays becoming a massive daily helping kit for elderly and disabled people. By using the Kinect sensors, remote monitoring has become easy. Also, the sensors' data are useful for the further improvement of the device. In this paper, we have discussed our newly developed “Eldo-care” system. This system is designed for the assessment and management of diverse neurological illnesses. The telemedical system is developed to monitor the psycho-neurological condition. People with disabilities and the elderly frequently experience access issues to essential services. Researchers today are concentrating on rehabilitative technologies based on human-computer interfaces that are closer to social-emotional intelligence. The goal of the study is to help old and disabled persons with cognitive rehabilitation using machine learning techniques. Human brain activity is observed using electroencephalograms, while user movement is tracked using Kinect sensors. Chebyshev filter is used for feature extraction and noise reduction. Utilizing the autoencoder technique, categorization is carried out by a Convolutional neural network with an accuracy of 95% and higher based on transfer learning. A better quality of life for older and disabled persons will be attained through the application of the suggested system in real time. The proposed device is attached to the subject under monitoring.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Eldo-care: EEG with Kinect sensor based telehealthcare for the disabled and the elderly\",\"authors\":\"Sima Das , Arpan Adhikary , Asif Ali Laghari , Solanki Mitra\",\"doi\":\"10.1016/j.neuri.2023.100130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Telehealthcare systems are nowadays becoming a massive daily helping kit for elderly and disabled people. By using the Kinect sensors, remote monitoring has become easy. Also, the sensors' data are useful for the further improvement of the device. In this paper, we have discussed our newly developed “Eldo-care” system. This system is designed for the assessment and management of diverse neurological illnesses. The telemedical system is developed to monitor the psycho-neurological condition. People with disabilities and the elderly frequently experience access issues to essential services. Researchers today are concentrating on rehabilitative technologies based on human-computer interfaces that are closer to social-emotional intelligence. The goal of the study is to help old and disabled persons with cognitive rehabilitation using machine learning techniques. Human brain activity is observed using electroencephalograms, while user movement is tracked using Kinect sensors. Chebyshev filter is used for feature extraction and noise reduction. Utilizing the autoencoder technique, categorization is carried out by a Convolutional neural network with an accuracy of 95% and higher based on transfer learning. A better quality of life for older and disabled persons will be attained through the application of the suggested system in real time. The proposed device is attached to the subject under monitoring.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"3 2\",\"pages\":\"Article 100130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772528623000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528623000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eldo-care: EEG with Kinect sensor based telehealthcare for the disabled and the elderly
Telehealthcare systems are nowadays becoming a massive daily helping kit for elderly and disabled people. By using the Kinect sensors, remote monitoring has become easy. Also, the sensors' data are useful for the further improvement of the device. In this paper, we have discussed our newly developed “Eldo-care” system. This system is designed for the assessment and management of diverse neurological illnesses. The telemedical system is developed to monitor the psycho-neurological condition. People with disabilities and the elderly frequently experience access issues to essential services. Researchers today are concentrating on rehabilitative technologies based on human-computer interfaces that are closer to social-emotional intelligence. The goal of the study is to help old and disabled persons with cognitive rehabilitation using machine learning techniques. Human brain activity is observed using electroencephalograms, while user movement is tracked using Kinect sensors. Chebyshev filter is used for feature extraction and noise reduction. Utilizing the autoencoder technique, categorization is carried out by a Convolutional neural network with an accuracy of 95% and higher based on transfer learning. A better quality of life for older and disabled persons will be attained through the application of the suggested system in real time. The proposed device is attached to the subject under monitoring.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology