V. Ibeabuchi, M. O. Ibearugbulem, Kelechi Okechukwu Njoku, E. O. Ihemegbulem, Princewill Okorie
{"title":"轴向压缩矩形加筋板屈曲分析的解析解","authors":"V. Ibeabuchi, M. O. Ibearugbulem, Kelechi Okechukwu Njoku, E. O. Ihemegbulem, Princewill Okorie","doi":"10.18280/rcma.310506","DOIUrl":null,"url":null,"abstract":"Analytical solution to the buckling problems of stiffened panels subjected to in-plane compressive loads is presented. The total potential energy functional of stiffened panel is obtained by the summation of that of a line continuum and stiffened panel derived from elastic principles of mechanics. Minimizing the resulting equation with respect to deflection coefficient and rearranging gives the expression for obtaining the buckling load of stiffened panel. Exact deflection functions were substituted directly in the new solution and various edge conditions were considered in this analysis. Obtained results were compared with analytical results of previous works. The method is computationally efficient for complex edge conditions and gives high numerical accuracy.","PeriodicalId":42458,"journal":{"name":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Contribution to Analytical Solutions for Buckling Analysis of Axially Compressed Rectangular Stiffened Panels\",\"authors\":\"V. Ibeabuchi, M. O. Ibearugbulem, Kelechi Okechukwu Njoku, E. O. Ihemegbulem, Princewill Okorie\",\"doi\":\"10.18280/rcma.310506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytical solution to the buckling problems of stiffened panels subjected to in-plane compressive loads is presented. The total potential energy functional of stiffened panel is obtained by the summation of that of a line continuum and stiffened panel derived from elastic principles of mechanics. Minimizing the resulting equation with respect to deflection coefficient and rearranging gives the expression for obtaining the buckling load of stiffened panel. Exact deflection functions were substituted directly in the new solution and various edge conditions were considered in this analysis. Obtained results were compared with analytical results of previous works. The method is computationally efficient for complex edge conditions and gives high numerical accuracy.\",\"PeriodicalId\":42458,\"journal\":{\"name\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/rcma.310506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des Composites et des Materiaux Avances-Journal of Composite and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/rcma.310506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A Contribution to Analytical Solutions for Buckling Analysis of Axially Compressed Rectangular Stiffened Panels
Analytical solution to the buckling problems of stiffened panels subjected to in-plane compressive loads is presented. The total potential energy functional of stiffened panel is obtained by the summation of that of a line continuum and stiffened panel derived from elastic principles of mechanics. Minimizing the resulting equation with respect to deflection coefficient and rearranging gives the expression for obtaining the buckling load of stiffened panel. Exact deflection functions were substituted directly in the new solution and various edge conditions were considered in this analysis. Obtained results were compared with analytical results of previous works. The method is computationally efficient for complex edge conditions and gives high numerical accuracy.