{"title":"保结构四元数全正交化方法及其应用","authors":"Tao Li, Qingwen Wang","doi":"10.1002/nla.2495","DOIUrl":null,"url":null,"abstract":"This article proposes a structure‐preserving quaternion full orthogonalization method (QFOM) for solving quaternion linear systems arising from color image restoration. The method is based on the quaternion Arnoldi procedure preserving the quaternion Hessenberg form. Combining with the preconditioning techniques, we further derive a variant of the QFOM for solving the linear systems, which can greatly improve the rate of convergence of QFOM. Numerical experiments on randomly generated data and color image restoration problems illustrate the effectiveness of the proposed algorithms in comparison with some existing methods.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structure preserving quaternion full orthogonalization method with applications\",\"authors\":\"Tao Li, Qingwen Wang\",\"doi\":\"10.1002/nla.2495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a structure‐preserving quaternion full orthogonalization method (QFOM) for solving quaternion linear systems arising from color image restoration. The method is based on the quaternion Arnoldi procedure preserving the quaternion Hessenberg form. Combining with the preconditioning techniques, we further derive a variant of the QFOM for solving the linear systems, which can greatly improve the rate of convergence of QFOM. Numerical experiments on randomly generated data and color image restoration problems illustrate the effectiveness of the proposed algorithms in comparison with some existing methods.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2495\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2495","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Structure preserving quaternion full orthogonalization method with applications
This article proposes a structure‐preserving quaternion full orthogonalization method (QFOM) for solving quaternion linear systems arising from color image restoration. The method is based on the quaternion Arnoldi procedure preserving the quaternion Hessenberg form. Combining with the preconditioning techniques, we further derive a variant of the QFOM for solving the linear systems, which can greatly improve the rate of convergence of QFOM. Numerical experiments on randomly generated data and color image restoration problems illustrate the effectiveness of the proposed algorithms in comparison with some existing methods.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.