多边形的极值区域,沿圆滑动

IF 0.6 4区 数学 Q3 MATHEMATICS
D. Siersma
{"title":"多边形的极值区域,沿圆滑动","authors":"D. Siersma","doi":"10.14492/hokmj/2020-312","DOIUrl":null,"url":null,"abstract":"We determine all critical configurations for the Area function on polygons with vertices on a circle or an ellipse. For isolated critical points we compute their Morse index, resp index of the gradient vector field. We relate the computation at an isolated degenerate point to an eigenvalue question about combinations. In the even dimensional case non-isolated singularities occur as `zigzag trains'.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extremal Area of Polygons, sliding along a circle\",\"authors\":\"D. Siersma\",\"doi\":\"10.14492/hokmj/2020-312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all critical configurations for the Area function on polygons with vertices on a circle or an ellipse. For isolated critical points we compute their Morse index, resp index of the gradient vector field. We relate the computation at an isolated degenerate point to an eigenvalue question about combinations. In the even dimensional case non-isolated singularities occur as `zigzag trains'.\",\"PeriodicalId\":55051,\"journal\":{\"name\":\"Hokkaido Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hokkaido Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14492/hokmj/2020-312\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2020-312","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们确定了顶点在圆形或椭圆上的多边形上的Area函数的所有关键配置。对于孤立的临界点,我们计算了它们的莫尔斯指数,梯度矢量场的resp指数。我们将孤立退化点处的计算与关于组合的特征值问题联系起来。在偶维情况下,非孤立奇点以“之字形列车”的形式出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal Area of Polygons, sliding along a circle
We determine all critical configurations for the Area function on polygons with vertices on a circle or an ellipse. For isolated critical points we compute their Morse index, resp index of the gradient vector field. We relate the computation at an isolated degenerate point to an eigenvalue question about combinations. In the even dimensional case non-isolated singularities occur as `zigzag trains'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信