Wenjun Song, Mengqi Liu, Thar Baker, Qikun Zhang, Yu-an Tan
{"title":"边缘云协同计算环境下基于隐私保护的联合学习组密钥交换和安全数据共享","authors":"Wenjun Song, Mengqi Liu, Thar Baker, Qikun Zhang, Yu-an Tan","doi":"10.1002/nem.2225","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Federated learning (FL) is widely used in internet of things (IoT) scenarios such as health research, automotive autopilot, and smart home systems. In the process of model training of FL, each round of model training requires rigorous decryption training and encryption uploading steps. The efficiency of FL is seriously affected by frequent encryption and decryption operations. A scheme of key computation and key management with high efficiency is urgently needed. Therefore, we propose a group key agreement technique to keep private information and confidential data from being leaked, which is used to encrypt and decrypt the transmitted data among IoT terminals. The key agreement scheme includes hidden attribute authentication, multipolicy access, and ciphertext storage. Key agreement is designed with edge-cloud collaborative network architecture. Firstly, the terminal generates its own public and private keys through the key algorithm then confirms the authenticity and mapping relationship of its private and public keys to the cloud server. Secondly, IoT terminals can confirm their cryptographic attributes to the cloud and obtain the permissions corresponding to each attribute by encrypting the attributes. The terminal uses these permissions to encrypt the FL model parameters and uploads the secret parameters to the edge server. Through the storage of the edge server, these ciphertext decryption parameters are shared with the other terminal models of FL. Finally, other terminal models are trained by downloading and decrypting the shared model parameters for the purpose of FL. The performance analysis shows that this model has a better performance in computational complexity and computational time compared with the cited literature.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"33 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A group key exchange and secure data sharing based on privacy protection for federated learning in edge-cloud collaborative computing environment\",\"authors\":\"Wenjun Song, Mengqi Liu, Thar Baker, Qikun Zhang, Yu-an Tan\",\"doi\":\"10.1002/nem.2225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Federated learning (FL) is widely used in internet of things (IoT) scenarios such as health research, automotive autopilot, and smart home systems. In the process of model training of FL, each round of model training requires rigorous decryption training and encryption uploading steps. The efficiency of FL is seriously affected by frequent encryption and decryption operations. A scheme of key computation and key management with high efficiency is urgently needed. Therefore, we propose a group key agreement technique to keep private information and confidential data from being leaked, which is used to encrypt and decrypt the transmitted data among IoT terminals. The key agreement scheme includes hidden attribute authentication, multipolicy access, and ciphertext storage. Key agreement is designed with edge-cloud collaborative network architecture. Firstly, the terminal generates its own public and private keys through the key algorithm then confirms the authenticity and mapping relationship of its private and public keys to the cloud server. Secondly, IoT terminals can confirm their cryptographic attributes to the cloud and obtain the permissions corresponding to each attribute by encrypting the attributes. The terminal uses these permissions to encrypt the FL model parameters and uploads the secret parameters to the edge server. Through the storage of the edge server, these ciphertext decryption parameters are shared with the other terminal models of FL. Finally, other terminal models are trained by downloading and decrypting the shared model parameters for the purpose of FL. The performance analysis shows that this model has a better performance in computational complexity and computational time compared with the cited literature.</p>\\n </div>\",\"PeriodicalId\":14154,\"journal\":{\"name\":\"International Journal of Network Management\",\"volume\":\"33 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Network Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nem.2225\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2225","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A group key exchange and secure data sharing based on privacy protection for federated learning in edge-cloud collaborative computing environment
Federated learning (FL) is widely used in internet of things (IoT) scenarios such as health research, automotive autopilot, and smart home systems. In the process of model training of FL, each round of model training requires rigorous decryption training and encryption uploading steps. The efficiency of FL is seriously affected by frequent encryption and decryption operations. A scheme of key computation and key management with high efficiency is urgently needed. Therefore, we propose a group key agreement technique to keep private information and confidential data from being leaked, which is used to encrypt and decrypt the transmitted data among IoT terminals. The key agreement scheme includes hidden attribute authentication, multipolicy access, and ciphertext storage. Key agreement is designed with edge-cloud collaborative network architecture. Firstly, the terminal generates its own public and private keys through the key algorithm then confirms the authenticity and mapping relationship of its private and public keys to the cloud server. Secondly, IoT terminals can confirm their cryptographic attributes to the cloud and obtain the permissions corresponding to each attribute by encrypting the attributes. The terminal uses these permissions to encrypt the FL model parameters and uploads the secret parameters to the edge server. Through the storage of the edge server, these ciphertext decryption parameters are shared with the other terminal models of FL. Finally, other terminal models are trained by downloading and decrypting the shared model parameters for the purpose of FL. The performance analysis shows that this model has a better performance in computational complexity and computational time compared with the cited literature.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.