$1$-可移动$2$-在图中求解跳支配

IF 1 Q1 MATHEMATICS
Angelica Mae Mahistrado, Helen M. Rara
{"title":"$1$-可移动$2$-在图中求解跳支配","authors":"Angelica Mae Mahistrado, Helen M. Rara","doi":"10.29020/nybg.ejpam.v16i3.4770","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph. A set $S$ of vertices in $G$ is a 1-movable 2-resolving hop dominating set of $G$ if $S$ is a 2-resolving hop dominating set in $G$ and for every $v \\in S$, either $S\\backslash \\{v\\}$ is a 2-resolving hop dominating set of $G$ or there exists a vertex $u \\in \\big((V (G) \\backslash S) \\cap N_G(v)\\big)$ such that $\\big(S \\backslash \\{v\\}\\big) \\cup \\{u\\}$ is a 2-resolving hop dominating set of $G$. The 1-movable 2-resolving hop domination number of $G$, denoted by $\\gamma^{1}_{m2Rh}(G)$ is the smallest cardinality of a 1-movable 2-resolving hop dominating set of $G$. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds of the 1-movable 2-resolving hop domination number of each of these graphs.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$1$-movable $2$-Resolving Hop Domination in Graph\",\"authors\":\"Angelica Mae Mahistrado, Helen M. Rara\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a connected graph. A set $S$ of vertices in $G$ is a 1-movable 2-resolving hop dominating set of $G$ if $S$ is a 2-resolving hop dominating set in $G$ and for every $v \\\\in S$, either $S\\\\backslash \\\\{v\\\\}$ is a 2-resolving hop dominating set of $G$ or there exists a vertex $u \\\\in \\\\big((V (G) \\\\backslash S) \\\\cap N_G(v)\\\\big)$ such that $\\\\big(S \\\\backslash \\\\{v\\\\}\\\\big) \\\\cup \\\\{u\\\\}$ is a 2-resolving hop dominating set of $G$. The 1-movable 2-resolving hop domination number of $G$, denoted by $\\\\gamma^{1}_{m2Rh}(G)$ is the smallest cardinality of a 1-movable 2-resolving hop dominating set of $G$. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds of the 1-movable 2-resolving hop domination number of each of these graphs.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$G$是一个连通图。$G$中顶点的集合$S$是$G$的1-可移动2-解析跳跃支配集,如果$S$是$S$中的2-解析跳跃主导集,并且对于S$中的每个$v\,$S\反斜杠\{v\}$是$G$的2-解析跳支配集,或者存在顶点$u\in\big((v(G)\反斜杠S)\cap N_G(v)\big)$,使得$\big(S\反斜杠\{v\}\big)\cup \{u\}$G$是2-解析跳跃主宰集。$G$的1-可移动2-解析跳跃支配数,用$\gamma表示^{1}_{m2Rh}(G)$是$G$的1-可移动2-解析跳跃支配集的最小基数。在本文中,我们研究了由一些二进制运算产生的图的概念并研究了它。具体地,我们刻画了图的连接、电晕和字典积中的1-可移动2-分辨跳跃支配集,并确定了这些图的1-可移2-分辨跳跃控制数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$1$-movable $2$-Resolving Hop Domination in Graph
Let $G$ be a connected graph. A set $S$ of vertices in $G$ is a 1-movable 2-resolving hop dominating set of $G$ if $S$ is a 2-resolving hop dominating set in $G$ and for every $v \in S$, either $S\backslash \{v\}$ is a 2-resolving hop dominating set of $G$ or there exists a vertex $u \in \big((V (G) \backslash S) \cap N_G(v)\big)$ such that $\big(S \backslash \{v\}\big) \cup \{u\}$ is a 2-resolving hop dominating set of $G$. The 1-movable 2-resolving hop domination number of $G$, denoted by $\gamma^{1}_{m2Rh}(G)$ is the smallest cardinality of a 1-movable 2-resolving hop dominating set of $G$. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds of the 1-movable 2-resolving hop domination number of each of these graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信