二次源阵列法预测高频投影仪远场性能

Q1 Mathematics
Shi-Ping Wang
{"title":"二次源阵列法预测高频投影仪远场性能","authors":"Shi-Ping Wang","doi":"10.1142/S0218396X17500023","DOIUrl":null,"url":null,"abstract":"This paper investigates the prediction of the far-field performances of high frequency projectors using the second source array method (SSAM). The far-field parameters can be calculated accurately using the complex acoustic pressure data of two very close parallel planes which lie in the near-field region of the projector. The paper simulates the feasibility of predicting the far-field parameters such as transmitting voltage response and the far-field directivity pattern. The predicting results are compared with that calculated using boundary element method (BEM). It shows very good agreement between the two methods. A planar high frequency projector is measured using the near-field method. In order to verify the predicting results, the far-field measurement is performed for the same projector. The comparison of the results shows that the near-field method is capable to precisely predict the far-field parameters of the projector.","PeriodicalId":54860,"journal":{"name":"Journal of Computational Acoustics","volume":"25 1","pages":"1750002"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S0218396X17500023","citationCount":"2","resultStr":"{\"title\":\"Far-Field Performances Prediction of High Frequency Projectors Using Secondary Source Array Method\",\"authors\":\"Shi-Ping Wang\",\"doi\":\"10.1142/S0218396X17500023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the prediction of the far-field performances of high frequency projectors using the second source array method (SSAM). The far-field parameters can be calculated accurately using the complex acoustic pressure data of two very close parallel planes which lie in the near-field region of the projector. The paper simulates the feasibility of predicting the far-field parameters such as transmitting voltage response and the far-field directivity pattern. The predicting results are compared with that calculated using boundary element method (BEM). It shows very good agreement between the two methods. A planar high frequency projector is measured using the near-field method. In order to verify the predicting results, the far-field measurement is performed for the same projector. The comparison of the results shows that the near-field method is capable to precisely predict the far-field parameters of the projector.\",\"PeriodicalId\":54860,\"journal\":{\"name\":\"Journal of Computational Acoustics\",\"volume\":\"25 1\",\"pages\":\"1750002\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S0218396X17500023\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Acoustics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218396X17500023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Acoustics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218396X17500023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了用第二源阵列法预测高频投影仪远场性能的方法。利用投影仪近场区两个非常接近的平行平面的复杂声压数据,可以精确地计算远场参数。本文模拟了发射电压响应和远场方向图等远场参数预测的可行性。并将预测结果与边界元法计算结果进行了比较。结果表明,这两种方法具有很好的一致性。采用近场法对平面高频投影仪进行了测量。为了验证预测结果,对同一台投影仪进行了远场测量。结果表明,近场法能够准确地预测投影仪的远场参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Far-Field Performances Prediction of High Frequency Projectors Using Secondary Source Array Method
This paper investigates the prediction of the far-field performances of high frequency projectors using the second source array method (SSAM). The far-field parameters can be calculated accurately using the complex acoustic pressure data of two very close parallel planes which lie in the near-field region of the projector. The paper simulates the feasibility of predicting the far-field parameters such as transmitting voltage response and the far-field directivity pattern. The predicting results are compared with that calculated using boundary element method (BEM). It shows very good agreement between the two methods. A planar high frequency projector is measured using the near-field method. In order to verify the predicting results, the far-field measurement is performed for the same projector. The comparison of the results shows that the near-field method is capable to precisely predict the far-field parameters of the projector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: Currently known as Journal of Theoretical and Computational Acoustics (JTCA).The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations. The journal strives to be flexible in the type of high quality papers it publishes and their format. Equally desirable are Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational acoustics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research in which other than strictly computational arguments may be important in establishing a basis for further developments. Tutorial review papers, covering some of the important issues in Computational Mathematical Methods, Scientific Computing, and their applications. Short notes, which present specific new results and techniques in a brief communication. The journal will occasionally publish significant contributions which are larger than the usual format for regular papers. Special issues which report results of high quality workshops in related areas and monographs of significant contributions in the Series of Computational Acoustics will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信