伪黎曼空间形式中的全脐子流形

IF 0.3 Q4 MATHEMATICS
Yuichiro Sato
{"title":"伪黎曼空间形式中的全脐子流形","authors":"Yuichiro Sato","doi":"10.21099/tkbjm/20214502097","DOIUrl":null,"url":null,"abstract":"A totally umbilical submanifold in pseudo-Riemannian manifolds is a fundamental notion, which is characterized by the fact that the second fundamental form to be proportional to the metric. And, it is also a generalization of a notion of a totally geodesic submanifold. In this paper, we classify congruent classes of full totally umbilical submanifolds in non-flat pseudo-Riemannian space forms, and consider its moduli spaces. As a consequence, we obtain that some moduli spaces of isometric immersions between space forms whose curvatures have the same constant are non-Hausdorff.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Totally umbilical submanifolds in pseudo-Riemannian space forms\",\"authors\":\"Yuichiro Sato\",\"doi\":\"10.21099/tkbjm/20214502097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A totally umbilical submanifold in pseudo-Riemannian manifolds is a fundamental notion, which is characterized by the fact that the second fundamental form to be proportional to the metric. And, it is also a generalization of a notion of a totally geodesic submanifold. In this paper, we classify congruent classes of full totally umbilical submanifolds in non-flat pseudo-Riemannian space forms, and consider its moduli spaces. As a consequence, we obtain that some moduli spaces of isometric immersions between space forms whose curvatures have the same constant are non-Hausdorff.\",\"PeriodicalId\":44321,\"journal\":{\"name\":\"Tsukuba Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsukuba Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21099/tkbjm/20214502097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/tkbjm/20214502097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

伪黎曼流形中的完全脐带子流形是一个基本概念,其特征是第二个基本形式与度规成正比。它也是对全测地线子流形概念的推广。本文对非平坦伪黎曼空间形式的满完全脐子流形的同余类进行了分类,并考虑了其模空间。因此,我们得到曲率具有相同常数的空间形式之间的等距浸入的模空间是非hausdorff的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Totally umbilical submanifolds in pseudo-Riemannian space forms
A totally umbilical submanifold in pseudo-Riemannian manifolds is a fundamental notion, which is characterized by the fact that the second fundamental form to be proportional to the metric. And, it is also a generalization of a notion of a totally geodesic submanifold. In this paper, we classify congruent classes of full totally umbilical submanifolds in non-flat pseudo-Riemannian space forms, and consider its moduli spaces. As a consequence, we obtain that some moduli spaces of isometric immersions between space forms whose curvatures have the same constant are non-Hausdorff.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信