{"title":"便携式振动光谱法可以区分草饲和谷饲牛肉","authors":"C. Coombs, Robert R Liddle, L. González","doi":"10.1177/09670335211049506","DOIUrl":null,"url":null,"abstract":"The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed (n = 54) and grain-fed (n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"29 1","pages":"321 - 329"},"PeriodicalIF":1.6000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Portable vibrational spectroscopic methods can discriminate between grass-fed and grain-fed beef\",\"authors\":\"C. Coombs, Robert R Liddle, L. González\",\"doi\":\"10.1177/09670335211049506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed (n = 54) and grain-fed (n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":\"29 1\",\"pages\":\"321 - 329\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335211049506\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211049506","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Portable vibrational spectroscopic methods can discriminate between grass-fed and grain-fed beef
The present study analysed the ability for portable near infrared reflectance (NIR) and Raman spectroscopy sensors to differentiate between grass-fed and grain-fed beef. Scans were made on lean and fat surfaces of 108 beef steak samples labelled as grass-fed (n = 54) and grain-fed (n = 54), with partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) used to develop discrimination models which were tested on independent datasets. Furthermore, PLS-DA was used to predict visual marbling score and days on feed (DOF). The NIR spectra accurately discriminated between grass- and grain-fed beef on both fat (91.7%, n = 92) and lean (88.5%, n = 96), as did Raman (fat 95.2%, n = 82; lean 69.6%, n = 68). Fat scanning using NIR spectroscopy moderately predicted DOF (r2val = 0.53), though Raman and NIR spectroscopy lean prediction models for DOF and marbling were less precise (r2val < 0.50). It can be concluded that portable NIR and Raman spectrometers can be used successfully to differentiate grass-fed from grain-fed beef and therefore aid retail and consumer confidence.
期刊介绍:
JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.