Lina María Peñuela Calderón, Nicolas Esteban Caicedo Gutierrez
{"title":"通过脑电图信号检测疼痛","authors":"Lina María Peñuela Calderón, Nicolas Esteban Caicedo Gutierrez","doi":"10.24050/reia.v19i38.1577","DOIUrl":null,"url":null,"abstract":"La evaluación de dolor es de gran importancia en el campo de la medicina ya que permite detectar condiciones médicas o definir la manera en la que se debe tratar. Su evaluación se basa en primera instancia en información que el mismo paciente entrega. Sin embargo, en algunos casos en los que el paciente no tiene la capacidad de expresarlo, resulta de gran utilidad métodos que permitan evaluarlo. En este artículo se propone la evaluación de presencia o ausencia de dolor a partir de características asociadas a señales electro-encefalográficas en un experimento en el que se induce dolor agudo a 14 participantes con una prueba de electro-diagnóstico, en hombres y mujeres con edades entre 18 y 33 años. Se utilizan redes neuronales para la clasificación, obteniendo una exactitud del 74,19 %.","PeriodicalId":21275,"journal":{"name":"Revista EIA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detección de dolor apartir de señales de EEG\",\"authors\":\"Lina María Peñuela Calderón, Nicolas Esteban Caicedo Gutierrez\",\"doi\":\"10.24050/reia.v19i38.1577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La evaluación de dolor es de gran importancia en el campo de la medicina ya que permite detectar condiciones médicas o definir la manera en la que se debe tratar. Su evaluación se basa en primera instancia en información que el mismo paciente entrega. Sin embargo, en algunos casos en los que el paciente no tiene la capacidad de expresarlo, resulta de gran utilidad métodos que permitan evaluarlo. En este artículo se propone la evaluación de presencia o ausencia de dolor a partir de características asociadas a señales electro-encefalográficas en un experimento en el que se induce dolor agudo a 14 participantes con una prueba de electro-diagnóstico, en hombres y mujeres con edades entre 18 y 33 años. Se utilizan redes neuronales para la clasificación, obteniendo una exactitud del 74,19 %.\",\"PeriodicalId\":21275,\"journal\":{\"name\":\"Revista EIA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista EIA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24050/reia.v19i38.1577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista EIA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24050/reia.v19i38.1577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
La evaluación de dolor es de gran importancia en el campo de la medicina ya que permite detectar condiciones médicas o definir la manera en la que se debe tratar. Su evaluación se basa en primera instancia en información que el mismo paciente entrega. Sin embargo, en algunos casos en los que el paciente no tiene la capacidad de expresarlo, resulta de gran utilidad métodos que permitan evaluarlo. En este artículo se propone la evaluación de presencia o ausencia de dolor a partir de características asociadas a señales electro-encefalográficas en un experimento en el que se induce dolor agudo a 14 participantes con una prueba de electro-diagnóstico, en hombres y mujeres con edades entre 18 y 33 años. Se utilizan redes neuronales para la clasificación, obteniendo una exactitud del 74,19 %.