Yasmina Bouleghebar, M. Bentchikou, O. Boukendakdji, K. El-Hadj, F. Debieb, A. Maisarah
{"title":"砖和玻璃粉对自密实砂浆力学性能和孔隙率的影响","authors":"Yasmina Bouleghebar, M. Bentchikou, O. Boukendakdji, K. El-Hadj, F. Debieb, A. Maisarah","doi":"10.2478/jaes-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract The use of glass and brick powder waste as supplementary cementious material provides an effective approach to produce concrete in order to effectively save resources and solve environmental pollution problems. This study shows the evolution of the preparation of an eco-friendly self-compacting mortar (SCM) with various fineness levels and replacement ratios of crushed glass and crushed calcined brick waste. Cement was replaced by weight, by 8, 12, 16, 20, 24% of glass powder (GP) and 4, 8, 12, 16 and 20% of crushed brick powder (BP), with three specific surface Blaine (SSB) fineness measurements (F1=3300cm2/g,F2=4400 cm2/g and F3=6000 cm2/g) for both wastes. Mini-slump and V-funnel flow time tests of fresh SCM were evaluated. Compressive and flexural strength developments of cured SCMs were determined on 7, 14, 28, 5 6, and 90 days. In addition, porosity of SCM was also evaluated. The results revealed that the (SCM-GP) mix increases workability and reduces superplasticizer dosage, while the (SCMBP) mix reduces workability with a slight increase in superplasticizer. When the GP fineness is higher than the cement fineness, the compression strength with GP contents up to 16% is superior to without the GP, whereas for the BP the strength improvement is up to 8%, while the compression strength decreases when the GP and BP fineness is close or lower than the cement fineness. The porosity diminishes with the increase of the fineness; the 12% of the GPF3 indicated the lowest porousness at 400 days, whereas for SCM-BP the 8BPF3 is the least porous mixture.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Effect of Brick and Glass Powder on the Mechanical Properties and Porosity of Self-Compacting Mortar\",\"authors\":\"Yasmina Bouleghebar, M. Bentchikou, O. Boukendakdji, K. El-Hadj, F. Debieb, A. Maisarah\",\"doi\":\"10.2478/jaes-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The use of glass and brick powder waste as supplementary cementious material provides an effective approach to produce concrete in order to effectively save resources and solve environmental pollution problems. This study shows the evolution of the preparation of an eco-friendly self-compacting mortar (SCM) with various fineness levels and replacement ratios of crushed glass and crushed calcined brick waste. Cement was replaced by weight, by 8, 12, 16, 20, 24% of glass powder (GP) and 4, 8, 12, 16 and 20% of crushed brick powder (BP), with three specific surface Blaine (SSB) fineness measurements (F1=3300cm2/g,F2=4400 cm2/g and F3=6000 cm2/g) for both wastes. Mini-slump and V-funnel flow time tests of fresh SCM were evaluated. Compressive and flexural strength developments of cured SCMs were determined on 7, 14, 28, 5 6, and 90 days. In addition, porosity of SCM was also evaluated. The results revealed that the (SCM-GP) mix increases workability and reduces superplasticizer dosage, while the (SCMBP) mix reduces workability with a slight increase in superplasticizer. When the GP fineness is higher than the cement fineness, the compression strength with GP contents up to 16% is superior to without the GP, whereas for the BP the strength improvement is up to 8%, while the compression strength decreases when the GP and BP fineness is close or lower than the cement fineness. The porosity diminishes with the increase of the fineness; the 12% of the GPF3 indicated the lowest porousness at 400 days, whereas for SCM-BP the 8BPF3 is the least porous mixture.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jaes-2023-0006\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jaes-2023-0006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Effect of Brick and Glass Powder on the Mechanical Properties and Porosity of Self-Compacting Mortar
Abstract The use of glass and brick powder waste as supplementary cementious material provides an effective approach to produce concrete in order to effectively save resources and solve environmental pollution problems. This study shows the evolution of the preparation of an eco-friendly self-compacting mortar (SCM) with various fineness levels and replacement ratios of crushed glass and crushed calcined brick waste. Cement was replaced by weight, by 8, 12, 16, 20, 24% of glass powder (GP) and 4, 8, 12, 16 and 20% of crushed brick powder (BP), with three specific surface Blaine (SSB) fineness measurements (F1=3300cm2/g,F2=4400 cm2/g and F3=6000 cm2/g) for both wastes. Mini-slump and V-funnel flow time tests of fresh SCM were evaluated. Compressive and flexural strength developments of cured SCMs were determined on 7, 14, 28, 5 6, and 90 days. In addition, porosity of SCM was also evaluated. The results revealed that the (SCM-GP) mix increases workability and reduces superplasticizer dosage, while the (SCMBP) mix reduces workability with a slight increase in superplasticizer. When the GP fineness is higher than the cement fineness, the compression strength with GP contents up to 16% is superior to without the GP, whereas for the BP the strength improvement is up to 8%, while the compression strength decreases when the GP and BP fineness is close or lower than the cement fineness. The porosity diminishes with the increase of the fineness; the 12% of the GPF3 indicated the lowest porousness at 400 days, whereas for SCM-BP the 8BPF3 is the least porous mixture.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.