K. N. Hussein, T. Molnar, R. Pintér, A. Tóth, E. Ayari, L. Friedrich, I. Dalmadi, G. Kiskó
{"title":"植物活性成分对肺假单胞菌和单核细胞增多性李斯特菌的体外抗菌活性","authors":"K. N. Hussein, T. Molnar, R. Pintér, A. Tóth, E. Ayari, L. Friedrich, I. Dalmadi, G. Kiskó","doi":"10.1556/446.2020.20018","DOIUrl":null,"url":null,"abstract":"This work aimed to study the antimicrobial activity of eight various components of plant origin on the growth of Pseudomonas lundensis and Listeria monocytogenes. Different in vitro methods were used: agar plate diffusion, micro atmosphere, agar hole diffusion, micro-dilution, and gradient-plate method. In the first agar plate assay, p-cymene and γ-terpinene did not inhibit the growth of the tested bacteria therefore they were not used in further experiments. Both α-pinene and limonene were only partially effective, but these were screened only for their partial inhibition. The other four components completely inhibited the growth of the tested bacteria. Using the agar-well diffusion method showed that carvacrol and thymol were found to be the most effective active components, thymol had minimum inhibitory concentration (MIC) at 1.563 mg/mL, however, in the case of carvacrol, MIC was 7.813 μL/mL. Additionally, eugenol and camphor show the same results but in higher concentrations. Gradient plate method was used to determine MIC values, in which it has been proved that carvacrol and thymol possess strong antimicrobial activity, no growth of tested bacteria was observed with carvacrol (100 μL/mL), while thymol exhibited MIC of 1.887 mg/mL against P. lundensis and 0.943 mg/mL needed to show complete inhibition of Listeria monocytogenes. Further experiments are needed to determine the optimum concentrations of the active components against P. lundensis and L. monocytogenes.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In vitro antimicrobial activity of plant active components against Pseudomonas lundensis and Listeria monocytogenes\",\"authors\":\"K. N. Hussein, T. Molnar, R. Pintér, A. Tóth, E. Ayari, L. Friedrich, I. Dalmadi, G. Kiskó\",\"doi\":\"10.1556/446.2020.20018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aimed to study the antimicrobial activity of eight various components of plant origin on the growth of Pseudomonas lundensis and Listeria monocytogenes. Different in vitro methods were used: agar plate diffusion, micro atmosphere, agar hole diffusion, micro-dilution, and gradient-plate method. In the first agar plate assay, p-cymene and γ-terpinene did not inhibit the growth of the tested bacteria therefore they were not used in further experiments. Both α-pinene and limonene were only partially effective, but these were screened only for their partial inhibition. The other four components completely inhibited the growth of the tested bacteria. Using the agar-well diffusion method showed that carvacrol and thymol were found to be the most effective active components, thymol had minimum inhibitory concentration (MIC) at 1.563 mg/mL, however, in the case of carvacrol, MIC was 7.813 μL/mL. Additionally, eugenol and camphor show the same results but in higher concentrations. Gradient plate method was used to determine MIC values, in which it has been proved that carvacrol and thymol possess strong antimicrobial activity, no growth of tested bacteria was observed with carvacrol (100 μL/mL), while thymol exhibited MIC of 1.887 mg/mL against P. lundensis and 0.943 mg/mL needed to show complete inhibition of Listeria monocytogenes. Further experiments are needed to determine the optimum concentrations of the active components against P. lundensis and L. monocytogenes.\",\"PeriodicalId\":20837,\"journal\":{\"name\":\"Progress in Agricultural Engineering Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Agricultural Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/446.2020.20018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2020.20018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
In vitro antimicrobial activity of plant active components against Pseudomonas lundensis and Listeria monocytogenes
This work aimed to study the antimicrobial activity of eight various components of plant origin on the growth of Pseudomonas lundensis and Listeria monocytogenes. Different in vitro methods were used: agar plate diffusion, micro atmosphere, agar hole diffusion, micro-dilution, and gradient-plate method. In the first agar plate assay, p-cymene and γ-terpinene did not inhibit the growth of the tested bacteria therefore they were not used in further experiments. Both α-pinene and limonene were only partially effective, but these were screened only for their partial inhibition. The other four components completely inhibited the growth of the tested bacteria. Using the agar-well diffusion method showed that carvacrol and thymol were found to be the most effective active components, thymol had minimum inhibitory concentration (MIC) at 1.563 mg/mL, however, in the case of carvacrol, MIC was 7.813 μL/mL. Additionally, eugenol and camphor show the same results but in higher concentrations. Gradient plate method was used to determine MIC values, in which it has been proved that carvacrol and thymol possess strong antimicrobial activity, no growth of tested bacteria was observed with carvacrol (100 μL/mL), while thymol exhibited MIC of 1.887 mg/mL against P. lundensis and 0.943 mg/mL needed to show complete inhibition of Listeria monocytogenes. Further experiments are needed to determine the optimum concentrations of the active components against P. lundensis and L. monocytogenes.
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.