{"title":"包含Routley和Meyer逻辑B的BN4和E4变体的三元关系语义","authors":"Sandra M. López","doi":"10.18778/0138-0680.2021.16","DOIUrl":null,"url":null,"abstract":"Six hopefully interesting variants of the logics BN4 and E4 – which can be considered as the 4-valued logics of the relevant conditional and (relevant) entailment, respectively – were previously developed in the literature. All these systems are related to the family of relevant logics and contain Routley and Meyer's basic logic B, which is well-known to be specifically associated with the ternary relational semantics. The aim of this paper is to develop reduced general Routley-Meyer semantics for them. Strong soundness and completeness theorems are proved for each one of the logics.","PeriodicalId":38667,"journal":{"name":"Bulletin of the Section of Logic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ternary Relational Semantics for the Variants of BN4 and E4 which Contain Routley and Meyer's Logic B\",\"authors\":\"Sandra M. López\",\"doi\":\"10.18778/0138-0680.2021.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Six hopefully interesting variants of the logics BN4 and E4 – which can be considered as the 4-valued logics of the relevant conditional and (relevant) entailment, respectively – were previously developed in the literature. All these systems are related to the family of relevant logics and contain Routley and Meyer's basic logic B, which is well-known to be specifically associated with the ternary relational semantics. The aim of this paper is to develop reduced general Routley-Meyer semantics for them. Strong soundness and completeness theorems are proved for each one of the logics.\",\"PeriodicalId\":38667,\"journal\":{\"name\":\"Bulletin of the Section of Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Section of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18778/0138-0680.2021.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Section of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18778/0138-0680.2021.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
Ternary Relational Semantics for the Variants of BN4 and E4 which Contain Routley and Meyer's Logic B
Six hopefully interesting variants of the logics BN4 and E4 – which can be considered as the 4-valued logics of the relevant conditional and (relevant) entailment, respectively – were previously developed in the literature. All these systems are related to the family of relevant logics and contain Routley and Meyer's basic logic B, which is well-known to be specifically associated with the ternary relational semantics. The aim of this paper is to develop reduced general Routley-Meyer semantics for them. Strong soundness and completeness theorems are proved for each one of the logics.