用于小空间碎片监视和轨道确定的立方体卫星编队结构

Q3 Mathematics
A. Afanasev, S. Biktimirov
{"title":"用于小空间碎片监视和轨道确定的立方体卫星编队结构","authors":"A. Afanasev, S. Biktimirov","doi":"10.31799/1684-8853-2021-4-37-46","DOIUrl":null,"url":null,"abstract":"Introduction: Satellites which face space debris cannot track it throughout the whole orbit due to natural limitations of their optical sensors, sush as field of view, Earth occultation, or solar illumination. Besides, the time of continuous observations is usually very short. Therefore, we are trying to offer the most effective configuration of optical sensors in order to provide short-arc tracking of a target piece of debris, using a scalable Extended Information Filter. Purpose: The best scenario for short-arc tracking of a space debris orbit using multipoint optical sensors. Results: We have found optimal configurations for groups of satellites with optical sensors which move along a sun-synchronous orbit.  Debris orbit determination using an Extended Information Filter and measurements from multipoint sensors was simulated, and mean squared errors of the target's position were calculated. Based on the simulation results for variouos configurations, inter-satellite distances and measurement time, the most reliable scenario (four satellites in tetrahedral configuration) was found and recommended for practical use in short-arc debris tracking.","PeriodicalId":36977,"journal":{"name":"Informatsionno-Upravliaiushchie Sistemy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CubeSat formation architecture for small space debris surveillance and orbit determination\",\"authors\":\"A. Afanasev, S. Biktimirov\",\"doi\":\"10.31799/1684-8853-2021-4-37-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Satellites which face space debris cannot track it throughout the whole orbit due to natural limitations of their optical sensors, sush as field of view, Earth occultation, or solar illumination. Besides, the time of continuous observations is usually very short. Therefore, we are trying to offer the most effective configuration of optical sensors in order to provide short-arc tracking of a target piece of debris, using a scalable Extended Information Filter. Purpose: The best scenario for short-arc tracking of a space debris orbit using multipoint optical sensors. Results: We have found optimal configurations for groups of satellites with optical sensors which move along a sun-synchronous orbit.  Debris orbit determination using an Extended Information Filter and measurements from multipoint sensors was simulated, and mean squared errors of the target's position were calculated. Based on the simulation results for variouos configurations, inter-satellite distances and measurement time, the most reliable scenario (four satellites in tetrahedral configuration) was found and recommended for practical use in short-arc debris tracking.\",\"PeriodicalId\":36977,\"journal\":{\"name\":\"Informatsionno-Upravliaiushchie Sistemy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatsionno-Upravliaiushchie Sistemy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31799/1684-8853-2021-4-37-46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatsionno-Upravliaiushchie Sistemy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31799/1684-8853-2021-4-37-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

引言:面对空间碎片的卫星由于其光学传感器的自然限制,如视野、地球掩星或太阳照明,无法在整个轨道上跟踪它。此外,连续观测的时间通常很短。因此,我们正试图提供最有效的光学传感器配置,以便使用可扩展的扩展信息过滤器对目标碎片进行短弧跟踪。目的:使用多点光学传感器对空间碎片轨道进行短弧跟踪的最佳方案。结果:我们发现了带有光学传感器的卫星组在太阳同步轨道上移动的最佳配置。模拟了使用扩展信息滤波器和多点传感器测量的碎片轨道确定,并计算了目标位置的均方误差。根据各种配置、卫星间距离和测量时间的模拟结果,找到了最可靠的场景(四面体配置的四颗卫星),并推荐在短弧碎片跟踪中实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CubeSat formation architecture for small space debris surveillance and orbit determination
Introduction: Satellites which face space debris cannot track it throughout the whole orbit due to natural limitations of their optical sensors, sush as field of view, Earth occultation, or solar illumination. Besides, the time of continuous observations is usually very short. Therefore, we are trying to offer the most effective configuration of optical sensors in order to provide short-arc tracking of a target piece of debris, using a scalable Extended Information Filter. Purpose: The best scenario for short-arc tracking of a space debris orbit using multipoint optical sensors. Results: We have found optimal configurations for groups of satellites with optical sensors which move along a sun-synchronous orbit.  Debris orbit determination using an Extended Information Filter and measurements from multipoint sensors was simulated, and mean squared errors of the target's position were calculated. Based on the simulation results for variouos configurations, inter-satellite distances and measurement time, the most reliable scenario (four satellites in tetrahedral configuration) was found and recommended for practical use in short-arc debris tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatsionno-Upravliaiushchie Sistemy
Informatsionno-Upravliaiushchie Sistemy Mathematics-Control and Optimization
CiteScore
1.40
自引率
0.00%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信