激光诱导击穿光谱测量粉末样品的沉积-球团制备技术

Q3 Engineering
H. Suyanto, A. Nasution, N. L. Trisnawati, I. Suprihatin
{"title":"激光诱导击穿光谱测量粉末样品的沉积-球团制备技术","authors":"H. Suyanto, A. Nasution, N. L. Trisnawati, I. Suprihatin","doi":"10.18280/i2m.210403","DOIUrl":null,"url":null,"abstract":"Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopy-based measurement technique that is capable of rapid and accurate qualitative, as well as quantitative, analysis of elemental ingredients either in solid (either for organic or inorganic compounds), liquid, or gaseous samples. Unfortunately, this is not the case for powdered samples, where the focused laser beam will disperse the powder. This can be overcome by making the powder into pellets. But it has an inherent drawback, i.e., the minimum amount of powder is about 0.2 g to obtain a good detectable signal. To cope with this unfavorable condition, especially for the amount of powder less than 0.1 mg, we proposed a sub-target deposition method to make the pellets in this reported work. Using this method, the analyzed powder was deposited into an indented hole on a pellet substrate of KBr with the following optimum conditions, i.e., pellet's pressing pressure of 400 kPa, laser energy of 120 mJ, and a sample's heating temperature of 70℃. Microanalyses of standard powdered samples of PbO, CuO, and ZnO have been carried out with estimated detection limits of 4.7 μg, 4.6 μg, and 3.9 μg, respectively. So, this method can be used to analyze small amounts (in the microgram range) of powdered samples.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deposition-Pellet Preparation Technique for Powder Samples Measurement Using Laser-Induced Breakdown Spectroscopy\",\"authors\":\"H. Suyanto, A. Nasution, N. L. Trisnawati, I. Suprihatin\",\"doi\":\"10.18280/i2m.210403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopy-based measurement technique that is capable of rapid and accurate qualitative, as well as quantitative, analysis of elemental ingredients either in solid (either for organic or inorganic compounds), liquid, or gaseous samples. Unfortunately, this is not the case for powdered samples, where the focused laser beam will disperse the powder. This can be overcome by making the powder into pellets. But it has an inherent drawback, i.e., the minimum amount of powder is about 0.2 g to obtain a good detectable signal. To cope with this unfavorable condition, especially for the amount of powder less than 0.1 mg, we proposed a sub-target deposition method to make the pellets in this reported work. Using this method, the analyzed powder was deposited into an indented hole on a pellet substrate of KBr with the following optimum conditions, i.e., pellet's pressing pressure of 400 kPa, laser energy of 120 mJ, and a sample's heating temperature of 70℃. Microanalyses of standard powdered samples of PbO, CuO, and ZnO have been carried out with estimated detection limits of 4.7 μg, 4.6 μg, and 3.9 μg, respectively. So, this method can be used to analyze small amounts (in the microgram range) of powdered samples.\",\"PeriodicalId\":38637,\"journal\":{\"name\":\"Instrumentation Mesure Metrologie\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instrumentation Mesure Metrologie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/i2m.210403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/i2m.210403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导击穿光谱(LIBS)是一种基于光谱的测量技术,能够对固体(有机或无机化合物)、液体或气体样品中的元素成分进行快速准确的定性和定量分析。不幸的是,粉末样品的情况并非如此,因为聚焦的激光束会分散粉末。这可以通过将粉末制成颗粒来克服。但它有一个固有的缺点,即要获得良好的检测信号,粉末的最小用量约为0.2 g。针对这一不利条件,特别是粉末量小于0.1 mg的情况,本文提出了亚靶沉积法制备球团的方法。采用该方法,在球团压力为400 kPa,激光能量为120 mJ,样品加热温度为70℃的条件下,将所分析的粉末沉积在KBr球团基底上的凹痕孔中。对PbO、CuO和ZnO标准粉末样品进行了微量分析,估计检出限分别为4.7 μg、4.6 μg和3.9 μg。因此,该方法可用于分析少量(微克范围内)的粉末样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deposition-Pellet Preparation Technique for Powder Samples Measurement Using Laser-Induced Breakdown Spectroscopy
Laser-Induced Breakdown Spectroscopy (LIBS) is a spectroscopy-based measurement technique that is capable of rapid and accurate qualitative, as well as quantitative, analysis of elemental ingredients either in solid (either for organic or inorganic compounds), liquid, or gaseous samples. Unfortunately, this is not the case for powdered samples, where the focused laser beam will disperse the powder. This can be overcome by making the powder into pellets. But it has an inherent drawback, i.e., the minimum amount of powder is about 0.2 g to obtain a good detectable signal. To cope with this unfavorable condition, especially for the amount of powder less than 0.1 mg, we proposed a sub-target deposition method to make the pellets in this reported work. Using this method, the analyzed powder was deposited into an indented hole on a pellet substrate of KBr with the following optimum conditions, i.e., pellet's pressing pressure of 400 kPa, laser energy of 120 mJ, and a sample's heating temperature of 70℃. Microanalyses of standard powdered samples of PbO, CuO, and ZnO have been carried out with estimated detection limits of 4.7 μg, 4.6 μg, and 3.9 μg, respectively. So, this method can be used to analyze small amounts (in the microgram range) of powdered samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信