Yojanes Rodríguez-Velásquez, R. Murphy‐Arteaga, R. Torres‐Torres
{"title":"用于不同宽度微带线信号发射器的微波连接器建模","authors":"Yojanes Rodríguez-Velásquez, R. Murphy‐Arteaga, R. Torres‐Torres","doi":"10.1109/LMWC.2022.3179927","DOIUrl":null,"url":null,"abstract":"A full characterization and modeling methodology for the electrical transitions introduced by coaxial connectors serving as interfaces for accessing microstrip (MS) lines is presented and verified up to 40 GHz. The associated two-port network parameters are obtained from measurements performed on MS lines of different lengths. Subsequently, two circuit models for the transition are proposed and used to assess the performance of the connector transition as the lines vary in width.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1295-1298"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Microwave Connectors Used as Signal Launchers for Microstrip Lines of Different Widths\",\"authors\":\"Yojanes Rodríguez-Velásquez, R. Murphy‐Arteaga, R. Torres‐Torres\",\"doi\":\"10.1109/LMWC.2022.3179927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A full characterization and modeling methodology for the electrical transitions introduced by coaxial connectors serving as interfaces for accessing microstrip (MS) lines is presented and verified up to 40 GHz. The associated two-port network parameters are obtained from measurements performed on MS lines of different lengths. Subsequently, two circuit models for the transition are proposed and used to assess the performance of the connector transition as the lines vary in width.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1295-1298\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3179927\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3179927","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling Microwave Connectors Used as Signal Launchers for Microstrip Lines of Different Widths
A full characterization and modeling methodology for the electrical transitions introduced by coaxial connectors serving as interfaces for accessing microstrip (MS) lines is presented and verified up to 40 GHz. The associated two-port network parameters are obtained from measurements performed on MS lines of different lengths. Subsequently, two circuit models for the transition are proposed and used to assess the performance of the connector transition as the lines vary in width.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.