基于极限学习机算法的指纹识别与分类研究

IF 3.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
David Zabala-Blanco, Diego Martinez-Pereira, Marco J. Flores-Calero, Jayanta Datta, Ali Dehghan Firoozabadi
{"title":"基于极限学习机算法的指纹识别与分类研究","authors":"David Zabala-Blanco, Diego Martinez-Pereira, Marco J. Flores-Calero, Jayanta Datta, Ali Dehghan Firoozabadi","doi":"10.4114/intartif.vol26iss71pp75-113","DOIUrl":null,"url":null,"abstract":"The fingerprint comes to be the most popular and utilized biometric for identifying persons owing to its bio-invariant characteristic, precision, as well as easy acquisition. A sub-system of an identification system is the classification stage in order to diminish the penetration rate and computational complexity. Actually, there are many formal investigations regarding techniques by exploiting convolutional neural networks  (CNN)  together with fingerprint images, which have superior performance metrics at the cost of large training times even employing high-performance computing, which is not feasible in the standard world. In our manuscript,  researches about identifying and classifying fingerprint databases by recurring to extreme learning machines (ELM) will be extensively reported and discussed for the first time. The diverse methodologies (ELM plus feature extractors) given by the authors will be studied and contrasted considering performance analysis.  Consequently,  academic papers with diverse versions of ELMs are developed to observe the pros and cons that they exhibit with each other and to probe how they may help for minimizing the penetration rate of fingerprint databases.  In fact,  this issue is very relevant because enhancing the penetration rate means shorting search times and computational complexity in fingerprints.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A-Survey: Identification and Classification of Fingerprints via the Extreme Learning Machine Algorithm\",\"authors\":\"David Zabala-Blanco, Diego Martinez-Pereira, Marco J. Flores-Calero, Jayanta Datta, Ali Dehghan Firoozabadi\",\"doi\":\"10.4114/intartif.vol26iss71pp75-113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fingerprint comes to be the most popular and utilized biometric for identifying persons owing to its bio-invariant characteristic, precision, as well as easy acquisition. A sub-system of an identification system is the classification stage in order to diminish the penetration rate and computational complexity. Actually, there are many formal investigations regarding techniques by exploiting convolutional neural networks  (CNN)  together with fingerprint images, which have superior performance metrics at the cost of large training times even employing high-performance computing, which is not feasible in the standard world. In our manuscript,  researches about identifying and classifying fingerprint databases by recurring to extreme learning machines (ELM) will be extensively reported and discussed for the first time. The diverse methodologies (ELM plus feature extractors) given by the authors will be studied and contrasted considering performance analysis.  Consequently,  academic papers with diverse versions of ELMs are developed to observe the pros and cons that they exhibit with each other and to probe how they may help for minimizing the penetration rate of fingerprint databases.  In fact,  this issue is very relevant because enhancing the penetration rate means shorting search times and computational complexity in fingerprints.\",\"PeriodicalId\":43470,\"journal\":{\"name\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol26iss71pp75-113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss71pp75-113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

指纹由于其生物不变性、精确性以及易于获取而成为最受欢迎和最常用的生物特征识别方法。识别系统的一个子系统是分类阶段,目的是降低渗透率和计算复杂性。事实上,有许多关于将卷积神经网络(CNN)与指纹图像结合使用的技术的正式研究,这些技术具有优越的性能指标,而代价是即使使用高性能计算也要花费大量的训练时间,这在标准世界中是不可行的。在我们的手稿中,将首次广泛报道和讨论通过递归到极限学习机(ELM)识别和分类指纹数据库的研究。作者给出的各种方法(ELM加特征提取器)将在考虑性能分析的情况下进行研究和对比。因此,开发了具有不同版本ELM的学术论文,以观察它们相互表现出的利弊,并探讨它们如何有助于最大限度地降低指纹数据库的渗透率。事实上,这个问题非常相关,因为提高渗透率意味着缩短指纹的搜索时间和计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A-Survey: Identification and Classification of Fingerprints via the Extreme Learning Machine Algorithm
The fingerprint comes to be the most popular and utilized biometric for identifying persons owing to its bio-invariant characteristic, precision, as well as easy acquisition. A sub-system of an identification system is the classification stage in order to diminish the penetration rate and computational complexity. Actually, there are many formal investigations regarding techniques by exploiting convolutional neural networks  (CNN)  together with fingerprint images, which have superior performance metrics at the cost of large training times even employing high-performance computing, which is not feasible in the standard world. In our manuscript,  researches about identifying and classifying fingerprint databases by recurring to extreme learning machines (ELM) will be extensively reported and discussed for the first time. The diverse methodologies (ELM plus feature extractors) given by the authors will be studied and contrasted considering performance analysis.  Consequently,  academic papers with diverse versions of ELMs are developed to observe the pros and cons that they exhibit with each other and to probe how they may help for minimizing the penetration rate of fingerprint databases.  In fact,  this issue is very relevant because enhancing the penetration rate means shorting search times and computational complexity in fingerprints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
15
审稿时长
8 weeks
期刊介绍: Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信