重切削难加工材料时刀具温度分布数学模型研究

Q3 Engineering
Yaonan Cheng, Li Liu, Lu Zhenzhen, R. Guan, Tong Wang
{"title":"重切削难加工材料时刀具温度分布数学模型研究","authors":"Yaonan Cheng, Li Liu, Lu Zhenzhen, R. Guan, Tong Wang","doi":"10.1504/ijnm.2019.10023466","DOIUrl":null,"url":null,"abstract":"Heavy cutting is the main machining way for high-end equipment and the high temperature generated from the cutting process largely influences on the machining and tool life. Firstly, the main cutting area where energy was converted into cutting heat and the approximate rectangular distribution of cutting temperature were received through finite element simulation of heavy cutting difficult-to-machine materials and the finite element simulation provided fundamental basis for temperature distribution mathematical model. Then, heavy cutting characteristics and Jaeger moving heat source theory were combined to calculate the average temperature of shearing surface and rake face of the cutting tool. Finally, temperature distribution mathematical model in tool-chip contact area for heavy cutting difficult-to-machine materials was established using Kelren theory. The results show that the established mathematical model are consistent with experiment results and the model provides theoretical basis for quantitative analysis of heavy cutting temperature, the optimisation of cutting parameters and heavy cutting tool design.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on temperature distribution mathematical model of cutting tool during heavy cutting difficult-to-machine materials\",\"authors\":\"Yaonan Cheng, Li Liu, Lu Zhenzhen, R. Guan, Tong Wang\",\"doi\":\"10.1504/ijnm.2019.10023466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy cutting is the main machining way for high-end equipment and the high temperature generated from the cutting process largely influences on the machining and tool life. Firstly, the main cutting area where energy was converted into cutting heat and the approximate rectangular distribution of cutting temperature were received through finite element simulation of heavy cutting difficult-to-machine materials and the finite element simulation provided fundamental basis for temperature distribution mathematical model. Then, heavy cutting characteristics and Jaeger moving heat source theory were combined to calculate the average temperature of shearing surface and rake face of the cutting tool. Finally, temperature distribution mathematical model in tool-chip contact area for heavy cutting difficult-to-machine materials was established using Kelren theory. The results show that the established mathematical model are consistent with experiment results and the model provides theoretical basis for quantitative analysis of heavy cutting temperature, the optimisation of cutting parameters and heavy cutting tool design.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijnm.2019.10023466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnm.2019.10023466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

重型切削是高端设备的主要加工方式,切削过程中产生的高温在很大程度上影响着加工和刀具寿命。首先,通过对重切削难加工材料的有限元模拟,得到了能量转化为切削热的主切削面积和切削温度的近似矩形分布,为建立温度分布数学模型提供了基础。然后,将重切削特性和耶格尔移动热源理论相结合,计算了刀具剪切面和前刀面的平均温度。最后,利用Kellen理论建立了重切削难加工材料刀屑接触区温度分布的数学模型。结果表明,所建立的数学模型与实验结果一致,为重型切削温度的定量分析、切削参数的优化和重型刀具的设计提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on temperature distribution mathematical model of cutting tool during heavy cutting difficult-to-machine materials
Heavy cutting is the main machining way for high-end equipment and the high temperature generated from the cutting process largely influences on the machining and tool life. Firstly, the main cutting area where energy was converted into cutting heat and the approximate rectangular distribution of cutting temperature were received through finite element simulation of heavy cutting difficult-to-machine materials and the finite element simulation provided fundamental basis for temperature distribution mathematical model. Then, heavy cutting characteristics and Jaeger moving heat source theory were combined to calculate the average temperature of shearing surface and rake face of the cutting tool. Finally, temperature distribution mathematical model in tool-chip contact area for heavy cutting difficult-to-machine materials was established using Kelren theory. The results show that the established mathematical model are consistent with experiment results and the model provides theoretical basis for quantitative analysis of heavy cutting temperature, the optimisation of cutting parameters and heavy cutting tool design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信