Muhsin Eren, Muhammetmyrat Palvanov, S. Kadir, S. Kapur
{"title":"土耳其南部库佩利洞穴石笋中的微岩溶作用","authors":"Muhsin Eren, Muhammetmyrat Palvanov, S. Kadir, S. Kapur","doi":"10.3986/ac.v51i2.10589","DOIUrl":null,"url":null,"abstract":"This article deals with micro-karstification forming abundant dissolution features in a stalagmite from Küpeli Cave in southern Turkey. Dissolution occurs when cave water enriched with CO2 from the atmosphere and soil seeps into the stalagmite. Water is transmitted from the surface of the stalagmite to the interior by the roughly vertical or diagonal notch-shaped pores formed by the enlargement of intercrystalline pores by dissolution. These slightly elongated pores appear embedded in different parts of the stalagmite and characterize different stages of dissolution during the stalagmite formation. Later, when this water reaches the relatively more permeable growth layer surfaces, it flows along these surfaces, and diffuse dissolution features form. These features include micro-scale pitted and etched surface structures, rounded and enlarged crystal boundaries and intercrystalline pores, and the breakdown of relatively large crystals into small crystals (micritization). When the percolating water is sufficiently saturated with calcium carbonate in the stalagmite, secondary calcite precipitation occurs as rim and pore-filling cements within the pores formed as a result of dissolution. In general, dissolution and calcite re-precipitation as cement are early diagenetic events and occur at different stages of stalagmite development due to seasonal variation in CO2 and CaCO3 contents of the water in the epikarst zone and within the stalagmite. These conditions were probably provided during the wet season. \n ","PeriodicalId":50905,"journal":{"name":"Acta Carsologica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-karstification in a stalagmite, Küpeli Cave, southern Turkey\",\"authors\":\"Muhsin Eren, Muhammetmyrat Palvanov, S. Kadir, S. Kapur\",\"doi\":\"10.3986/ac.v51i2.10589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with micro-karstification forming abundant dissolution features in a stalagmite from Küpeli Cave in southern Turkey. Dissolution occurs when cave water enriched with CO2 from the atmosphere and soil seeps into the stalagmite. Water is transmitted from the surface of the stalagmite to the interior by the roughly vertical or diagonal notch-shaped pores formed by the enlargement of intercrystalline pores by dissolution. These slightly elongated pores appear embedded in different parts of the stalagmite and characterize different stages of dissolution during the stalagmite formation. Later, when this water reaches the relatively more permeable growth layer surfaces, it flows along these surfaces, and diffuse dissolution features form. These features include micro-scale pitted and etched surface structures, rounded and enlarged crystal boundaries and intercrystalline pores, and the breakdown of relatively large crystals into small crystals (micritization). When the percolating water is sufficiently saturated with calcium carbonate in the stalagmite, secondary calcite precipitation occurs as rim and pore-filling cements within the pores formed as a result of dissolution. In general, dissolution and calcite re-precipitation as cement are early diagenetic events and occur at different stages of stalagmite development due to seasonal variation in CO2 and CaCO3 contents of the water in the epikarst zone and within the stalagmite. These conditions were probably provided during the wet season. \\n \",\"PeriodicalId\":50905,\"journal\":{\"name\":\"Acta Carsologica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Carsologica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3986/ac.v51i2.10589\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Carsologica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3986/ac.v51i2.10589","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Micro-karstification in a stalagmite, Küpeli Cave, southern Turkey
This article deals with micro-karstification forming abundant dissolution features in a stalagmite from Küpeli Cave in southern Turkey. Dissolution occurs when cave water enriched with CO2 from the atmosphere and soil seeps into the stalagmite. Water is transmitted from the surface of the stalagmite to the interior by the roughly vertical or diagonal notch-shaped pores formed by the enlargement of intercrystalline pores by dissolution. These slightly elongated pores appear embedded in different parts of the stalagmite and characterize different stages of dissolution during the stalagmite formation. Later, when this water reaches the relatively more permeable growth layer surfaces, it flows along these surfaces, and diffuse dissolution features form. These features include micro-scale pitted and etched surface structures, rounded and enlarged crystal boundaries and intercrystalline pores, and the breakdown of relatively large crystals into small crystals (micritization). When the percolating water is sufficiently saturated with calcium carbonate in the stalagmite, secondary calcite precipitation occurs as rim and pore-filling cements within the pores formed as a result of dissolution. In general, dissolution and calcite re-precipitation as cement are early diagenetic events and occur at different stages of stalagmite development due to seasonal variation in CO2 and CaCO3 contents of the water in the epikarst zone and within the stalagmite. These conditions were probably provided during the wet season.
期刊介绍:
Karst areas occupy 10-20 % of ice-free land. Dissolution of rock by natural waters has given rise to specific landscape and underground. Karst surface features and caves have attracted man''s curiosity since the dawn of humanity and have been a focus to scientific studies since more than half of millennia.
Acta Carsologica publishes original research papers and reviews, letters, essays and reports covering topics related to specific of karst areas. These comprise, but are not limited to karst geology, hydrology, and geomorphology, speleology, hydrogeology, biospeleology and history of karst science.