基于遥感和不同变化检测技术的城市土地利用变化分析&以安卡拉省为例

Q2 Social Sciences
M. Gurbuz, A. Çilek
{"title":"基于遥感和不同变化检测技术的城市土地利用变化分析&以安卡拉省为例","authors":"M. Gurbuz, A. Çilek","doi":"10.5194/isprs-archives-xlviii-m-1-2023-515-2023","DOIUrl":null,"url":null,"abstract":"Abstract. This study aims to use remote sensing techniques to map the urban region of Ankara from the past to the present, assessing the nature, magnitude and direction of changes within the area, including the transformation of LULC classes and explaining the driving forces behind these transformations. The study encompasses three stages. Firstly, Landsat 7 ETM+ images from 2000 and Sentinel-2 satellite images from 2020 were obtained for Ankara city and surroundings through the Google Earth Engine (GEE) platform. Image classification was conducted for both 2000 and 2020 using 'Blue', 'Green', 'Red', 'Vegetation Red Edge1', 'Vegetation Red Edge2', 'Vegetation Red Edge3', 'NIR', 'Vegetation Red Edge4', 'Water vapour', ' SWIR1', 'SWIR2' bands, as well as 'NDWI', 'NDVI', 'NDBI' indices on the GEE platform. LULC was classified using the Random Forest (RF) classifier, which included six classes: urban area, forest, water surfaces, open areas, agricultural areas and roads. Secondly, the LULC maps of the 2000 and 2020 images were classified using RF. The study employed the 'Categorical Change, Pixel Value Change and Time Series Change' methods to determine the transformations between LULC categories. Specifically, the urban change within the study area increased by 70% between 2000 and 2020. Over the past 20 years, from 2000 to 2020, the urban areas in Ankara expanded by 170%. Consequently, accurately determining the nature, magnitude and direction of urban development using remote sensing data offers valuable baseline information for various disciplines related to spatial planning at local and national scales.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF URBAN LAND USE CHANGE USING REMOTE SENSING AND DIFFERENT CHANGE DETECTION TECHNIQUES: THE CASE OF ANKARA PROVINCE\",\"authors\":\"M. Gurbuz, A. Çilek\",\"doi\":\"10.5194/isprs-archives-xlviii-m-1-2023-515-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. This study aims to use remote sensing techniques to map the urban region of Ankara from the past to the present, assessing the nature, magnitude and direction of changes within the area, including the transformation of LULC classes and explaining the driving forces behind these transformations. The study encompasses three stages. Firstly, Landsat 7 ETM+ images from 2000 and Sentinel-2 satellite images from 2020 were obtained for Ankara city and surroundings through the Google Earth Engine (GEE) platform. Image classification was conducted for both 2000 and 2020 using 'Blue', 'Green', 'Red', 'Vegetation Red Edge1', 'Vegetation Red Edge2', 'Vegetation Red Edge3', 'NIR', 'Vegetation Red Edge4', 'Water vapour', ' SWIR1', 'SWIR2' bands, as well as 'NDWI', 'NDVI', 'NDBI' indices on the GEE platform. LULC was classified using the Random Forest (RF) classifier, which included six classes: urban area, forest, water surfaces, open areas, agricultural areas and roads. Secondly, the LULC maps of the 2000 and 2020 images were classified using RF. The study employed the 'Categorical Change, Pixel Value Change and Time Series Change' methods to determine the transformations between LULC categories. Specifically, the urban change within the study area increased by 70% between 2000 and 2020. Over the past 20 years, from 2000 to 2020, the urban areas in Ankara expanded by 170%. Consequently, accurately determining the nature, magnitude and direction of urban development using remote sensing data offers valuable baseline information for various disciplines related to spatial planning at local and national scales.\\n\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-515-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-515-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要这项研究旨在利用遥感技术绘制安卡拉城市地区从过去到现在的地图,评估该地区变化的性质、幅度和方向,包括土地利用和土地利用类别的转变,并解释这些转变背后的驱动力。这项研究包括三个阶段。首先,通过谷歌地球引擎(GEE)平台获得了安卡拉城市和周边地区2000年的陆地卫星7号ETM+图像和2020年的哨兵2号卫星图像。2000年和2020年,使用GEE平台上的“蓝色”、“绿色”、“红色”、“植被红边1”、“植物红边2”、“草木红边3”、“NIR”、“植被红边4”、“水蒸气”、“SWIR1”、“SWIR2”波段以及“NDWI”、“NDVI”、“NDAI”指数进行了图像分类。LULC使用随机森林(RF)分类器进行分类,该分类器包括六类:城市区域、森林、水面、开放区域、农业区域和道路。其次,使用RF对2000年和2020年图像的LULC图进行分类。该研究采用了“类别变化、像素值变化和时间序列变化”方法来确定LULC类别之间的转换。具体而言,研究区域内的城市变化在2000年至2020年间增加了70%。在过去的20年里,从2000年到2020年,安卡拉的城市面积扩大了170%。因此,利用遥感数据准确确定城市发展的性质、规模和方向,为地方和国家尺度上与空间规划相关的各个学科提供了宝贵的基线信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF URBAN LAND USE CHANGE USING REMOTE SENSING AND DIFFERENT CHANGE DETECTION TECHNIQUES: THE CASE OF ANKARA PROVINCE
Abstract. This study aims to use remote sensing techniques to map the urban region of Ankara from the past to the present, assessing the nature, magnitude and direction of changes within the area, including the transformation of LULC classes and explaining the driving forces behind these transformations. The study encompasses three stages. Firstly, Landsat 7 ETM+ images from 2000 and Sentinel-2 satellite images from 2020 were obtained for Ankara city and surroundings through the Google Earth Engine (GEE) platform. Image classification was conducted for both 2000 and 2020 using 'Blue', 'Green', 'Red', 'Vegetation Red Edge1', 'Vegetation Red Edge2', 'Vegetation Red Edge3', 'NIR', 'Vegetation Red Edge4', 'Water vapour', ' SWIR1', 'SWIR2' bands, as well as 'NDWI', 'NDVI', 'NDBI' indices on the GEE platform. LULC was classified using the Random Forest (RF) classifier, which included six classes: urban area, forest, water surfaces, open areas, agricultural areas and roads. Secondly, the LULC maps of the 2000 and 2020 images were classified using RF. The study employed the 'Categorical Change, Pixel Value Change and Time Series Change' methods to determine the transformations between LULC categories. Specifically, the urban change within the study area increased by 70% between 2000 and 2020. Over the past 20 years, from 2000 to 2020, the urban areas in Ankara expanded by 170%. Consequently, accurately determining the nature, magnitude and direction of urban development using remote sensing data offers valuable baseline information for various disciplines related to spatial planning at local and national scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信