{"title":"金与SiO2界面热导率的分子动力学研究","authors":"S. M. Hatam-Lee, F. Jabbari, A. Rajabpour","doi":"10.1080/15567265.2022.2066585","DOIUrl":null,"url":null,"abstract":"ABSTRACT Silica coating on a gold nanoparticle can improve its thermal application in cancer thermotherapy. In this paper, the interfacial thermal conductance between gold and silica is calculated utilizing classical non-equilibrium molecular dynamics. It is revealed that the results of molecular dynamics are different from what has been predicted by the conventional diffuse mismatch model. Furthermore, the interfacial thermal conductance between amorphous SiO2 and gold is approximately twice that of crystalline silica, which is explained by calculating the vibrational density of state mismatches. The interfacial thermal conductance variations in terms of van der Waals interaction strength between gold and silica are also investigated. It is revealed that the conductance increases by about 30% by increasing the simulation temperature from 300 to 700 K. The results of this paper can be useful in nanofluid systems, in addition to the application of silica-coated gold nanoparticles in cancer thermal therapy.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"26 1","pages":"40 - 51"},"PeriodicalIF":2.7000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Interfacial thermal conductance between gold and SiO2: A molecular dynamics study\",\"authors\":\"S. M. Hatam-Lee, F. Jabbari, A. Rajabpour\",\"doi\":\"10.1080/15567265.2022.2066585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Silica coating on a gold nanoparticle can improve its thermal application in cancer thermotherapy. In this paper, the interfacial thermal conductance between gold and silica is calculated utilizing classical non-equilibrium molecular dynamics. It is revealed that the results of molecular dynamics are different from what has been predicted by the conventional diffuse mismatch model. Furthermore, the interfacial thermal conductance between amorphous SiO2 and gold is approximately twice that of crystalline silica, which is explained by calculating the vibrational density of state mismatches. The interfacial thermal conductance variations in terms of van der Waals interaction strength between gold and silica are also investigated. It is revealed that the conductance increases by about 30% by increasing the simulation temperature from 300 to 700 K. The results of this paper can be useful in nanofluid systems, in addition to the application of silica-coated gold nanoparticles in cancer thermal therapy.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"26 1\",\"pages\":\"40 - 51\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2022.2066585\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2022.2066585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Interfacial thermal conductance between gold and SiO2: A molecular dynamics study
ABSTRACT Silica coating on a gold nanoparticle can improve its thermal application in cancer thermotherapy. In this paper, the interfacial thermal conductance between gold and silica is calculated utilizing classical non-equilibrium molecular dynamics. It is revealed that the results of molecular dynamics are different from what has been predicted by the conventional diffuse mismatch model. Furthermore, the interfacial thermal conductance between amorphous SiO2 and gold is approximately twice that of crystalline silica, which is explained by calculating the vibrational density of state mismatches. The interfacial thermal conductance variations in terms of van der Waals interaction strength between gold and silica are also investigated. It is revealed that the conductance increases by about 30% by increasing the simulation temperature from 300 to 700 K. The results of this paper can be useful in nanofluid systems, in addition to the application of silica-coated gold nanoparticles in cancer thermal therapy.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.