评估上下文推断误差和部分可观察性对实时自适应干预RL方法的影响

Karine Karine, P. Klasnja, Susan A. Murphy, Benjamin M Marlin
{"title":"评估上下文推断误差和部分可观察性对实时自适应干预RL方法的影响","authors":"Karine Karine, P. Klasnja, Susan A. Murphy, Benjamin M Marlin","doi":"10.48550/arXiv.2305.09913","DOIUrl":null,"url":null,"abstract":"Just-in-Time Adaptive Interventions (JITAIs) are a class of personalized health interventions developed within the behavioral science community. JITAIs aim to provide the right type and amount of support by iteratively selecting a sequence of intervention options from a pre-defined set of components in response to each individual's time varying state. In this work, we explore the application of reinforcement learning methods to the problem of learning intervention option selection policies. We study the effect of context inference error and partial observability on the ability to learn effective policies. Our results show that the propagation of uncertainty from context inferences is critical to improving intervention efficacy as context uncertainty increases, while policy gradient algorithms can provide remarkable robustness to partially observed behavioral state information.","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"216 1","pages":"1047-1057"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impact of Context Inference Error and Partial Observability on RL Methods for Just-In-Time Adaptive Interventions\",\"authors\":\"Karine Karine, P. Klasnja, Susan A. Murphy, Benjamin M Marlin\",\"doi\":\"10.48550/arXiv.2305.09913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Just-in-Time Adaptive Interventions (JITAIs) are a class of personalized health interventions developed within the behavioral science community. JITAIs aim to provide the right type and amount of support by iteratively selecting a sequence of intervention options from a pre-defined set of components in response to each individual's time varying state. In this work, we explore the application of reinforcement learning methods to the problem of learning intervention option selection policies. We study the effect of context inference error and partial observability on the ability to learn effective policies. Our results show that the propagation of uncertainty from context inferences is critical to improving intervention efficacy as context uncertainty increases, while policy gradient algorithms can provide remarkable robustness to partially observed behavioral state information.\",\"PeriodicalId\":74504,\"journal\":{\"name\":\"Proceedings of machine learning research\",\"volume\":\"216 1\",\"pages\":\"1047-1057\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of machine learning research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.09913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.09913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时适应性干预(JITAIs)是行为科学界开发的一类个性化健康干预措施。JITAI旨在通过从预定义的一组组件中迭代选择一系列干预选项来提供正确类型和数量的支持,以响应每个个体的时变状态。在这项工作中,我们探索了强化学习方法在学习干预选项选择策略问题中的应用。我们研究了上下文推理误差和部分可观察性对学习有效策略能力的影响。我们的结果表明,随着上下文不确定性的增加,上下文推断的不确定性的传播对于提高干预效果至关重要,而策略梯度算法可以对部分观察到的行为状态信息提供显著的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the Impact of Context Inference Error and Partial Observability on RL Methods for Just-In-Time Adaptive Interventions
Just-in-Time Adaptive Interventions (JITAIs) are a class of personalized health interventions developed within the behavioral science community. JITAIs aim to provide the right type and amount of support by iteratively selecting a sequence of intervention options from a pre-defined set of components in response to each individual's time varying state. In this work, we explore the application of reinforcement learning methods to the problem of learning intervention option selection policies. We study the effect of context inference error and partial observability on the ability to learn effective policies. Our results show that the propagation of uncertainty from context inferences is critical to improving intervention efficacy as context uncertainty increases, while policy gradient algorithms can provide remarkable robustness to partially observed behavioral state information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信