E. A. Asare, E. Dartey, K. Sarpong, Emmanuel Effah-Yeboah, Papa Kofi Amissah-Reynolds, S. Tagoe, Gadafi Iddrisu Balali
{"title":"枯草芽孢杆菌ATCC13952介导的砷在加纳西部Wassa West市选定金矿社区地下水中的吸附等温线、动力学和热力学模型","authors":"E. A. Asare, E. Dartey, K. Sarpong, Emmanuel Effah-Yeboah, Papa Kofi Amissah-Reynolds, S. Tagoe, Gadafi Iddrisu Balali","doi":"10.4236/AJAC.2021.125010","DOIUrl":null,"url":null,"abstract":"This study investigated Bacillus subtilis ATCC13952 as an adsorbent for arsenic in groundwater. Batch experiments were used to determine the effect of contact time, adsorbent dose, arsenic (III) concentration, pH, and temperature on the process. The percentage of arsenic (III) removed was high at a contact time of four days, 3.0 mL of Bacillus subtilis ATCC13952, pH 8 and temperature of 35°C. The kinetics of the process showed the Elovich kinetics model as the best fit for the process. This indicates that arsenic removal was by chemisorption. The analysis of the nonlinear equilibrium isotherms and the error functions showed the Langmuir isotherm as best fit for the process. Mechanistic study of the process indicated bulk diffusion to be the rate-determining step. Thermodynamically, the process was favourable, spontaneous and feasible. When the community water samples were treated with the Bacillus subtilis ATCC13952 at the optimum contact time, adsorbent dose, pH and temperature, 99.96% - 99.97% of arsenic was removed across all sampling points within the studied communities. Hence, the results show that Bacillus subtilis ATCC13952 is an efficient adsorbent for arsenic in aqueous systems and the organism appears to hold the key to purging the environment of arsenic contamination.","PeriodicalId":63216,"journal":{"name":"美国分析化学(英文)","volume":"12 1","pages":"121-161"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adsorption Isotherm, Kinetic and Thermodynamic Modelling of Bacillus subtilis ATCC13952 Mediated Adsorption of Arsenic in Groundwaters of Selected Gold Mining Communities in the Wassa West Municipality of the Western Region of Ghana\",\"authors\":\"E. A. Asare, E. Dartey, K. Sarpong, Emmanuel Effah-Yeboah, Papa Kofi Amissah-Reynolds, S. Tagoe, Gadafi Iddrisu Balali\",\"doi\":\"10.4236/AJAC.2021.125010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated Bacillus subtilis ATCC13952 as an adsorbent for arsenic in groundwater. Batch experiments were used to determine the effect of contact time, adsorbent dose, arsenic (III) concentration, pH, and temperature on the process. The percentage of arsenic (III) removed was high at a contact time of four days, 3.0 mL of Bacillus subtilis ATCC13952, pH 8 and temperature of 35°C. The kinetics of the process showed the Elovich kinetics model as the best fit for the process. This indicates that arsenic removal was by chemisorption. The analysis of the nonlinear equilibrium isotherms and the error functions showed the Langmuir isotherm as best fit for the process. Mechanistic study of the process indicated bulk diffusion to be the rate-determining step. Thermodynamically, the process was favourable, spontaneous and feasible. When the community water samples were treated with the Bacillus subtilis ATCC13952 at the optimum contact time, adsorbent dose, pH and temperature, 99.96% - 99.97% of arsenic was removed across all sampling points within the studied communities. Hence, the results show that Bacillus subtilis ATCC13952 is an efficient adsorbent for arsenic in aqueous systems and the organism appears to hold the key to purging the environment of arsenic contamination.\",\"PeriodicalId\":63216,\"journal\":{\"name\":\"美国分析化学(英文)\",\"volume\":\"12 1\",\"pages\":\"121-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"美国分析化学(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/AJAC.2021.125010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"美国分析化学(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/AJAC.2021.125010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption Isotherm, Kinetic and Thermodynamic Modelling of Bacillus subtilis ATCC13952 Mediated Adsorption of Arsenic in Groundwaters of Selected Gold Mining Communities in the Wassa West Municipality of the Western Region of Ghana
This study investigated Bacillus subtilis ATCC13952 as an adsorbent for arsenic in groundwater. Batch experiments were used to determine the effect of contact time, adsorbent dose, arsenic (III) concentration, pH, and temperature on the process. The percentage of arsenic (III) removed was high at a contact time of four days, 3.0 mL of Bacillus subtilis ATCC13952, pH 8 and temperature of 35°C. The kinetics of the process showed the Elovich kinetics model as the best fit for the process. This indicates that arsenic removal was by chemisorption. The analysis of the nonlinear equilibrium isotherms and the error functions showed the Langmuir isotherm as best fit for the process. Mechanistic study of the process indicated bulk diffusion to be the rate-determining step. Thermodynamically, the process was favourable, spontaneous and feasible. When the community water samples were treated with the Bacillus subtilis ATCC13952 at the optimum contact time, adsorbent dose, pH and temperature, 99.96% - 99.97% of arsenic was removed across all sampling points within the studied communities. Hence, the results show that Bacillus subtilis ATCC13952 is an efficient adsorbent for arsenic in aqueous systems and the organism appears to hold the key to purging the environment of arsenic contamination.