{"title":"波浪和水流共同作用下近海水产养殖结构的动力学模拟","authors":"Hui Cheng, M. Ong, Lin Li","doi":"10.1115/1.4062623","DOIUrl":null,"url":null,"abstract":"\n The reliable design of offshore aquaculture structure (OAS) for fish farming in the open ocean is vital to the marine aquaculture industry in the future. However, the lack of easy-to-access numerical tools for the dynamic analysis of OAS challenges the development of marine aquaculture. This article presents a newly developed numerical library under an open-source, finite-element analysis code, Code_Aster, enabling the dynamic analysis of OAS. A numerical model of OAS is first developed using the present numerical library, and then validated against published experiments. The validation shows a good agreement in terms of structural motions and tensions in mooring lines. Subsequently, the dynamic responses of this model are analyzed under irregular waves and current conditions from field measurements on an offshore fish farm site. The results indicate that a negative mean pitch angle will occur when the current velocity is large.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DYNAMIC SIMULATION OF AN OFFSHORE AQUACULTURE STRUCTURE SUBJECTED TO COMBINED WAVE AND CURRENT CONDITIONS\",\"authors\":\"Hui Cheng, M. Ong, Lin Li\",\"doi\":\"10.1115/1.4062623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The reliable design of offshore aquaculture structure (OAS) for fish farming in the open ocean is vital to the marine aquaculture industry in the future. However, the lack of easy-to-access numerical tools for the dynamic analysis of OAS challenges the development of marine aquaculture. This article presents a newly developed numerical library under an open-source, finite-element analysis code, Code_Aster, enabling the dynamic analysis of OAS. A numerical model of OAS is first developed using the present numerical library, and then validated against published experiments. The validation shows a good agreement in terms of structural motions and tensions in mooring lines. Subsequently, the dynamic responses of this model are analyzed under irregular waves and current conditions from field measurements on an offshore fish farm site. The results indicate that a negative mean pitch angle will occur when the current velocity is large.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062623\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062623","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
DYNAMIC SIMULATION OF AN OFFSHORE AQUACULTURE STRUCTURE SUBJECTED TO COMBINED WAVE AND CURRENT CONDITIONS
The reliable design of offshore aquaculture structure (OAS) for fish farming in the open ocean is vital to the marine aquaculture industry in the future. However, the lack of easy-to-access numerical tools for the dynamic analysis of OAS challenges the development of marine aquaculture. This article presents a newly developed numerical library under an open-source, finite-element analysis code, Code_Aster, enabling the dynamic analysis of OAS. A numerical model of OAS is first developed using the present numerical library, and then validated against published experiments. The validation shows a good agreement in terms of structural motions and tensions in mooring lines. Subsequently, the dynamic responses of this model are analyzed under irregular waves and current conditions from field measurements on an offshore fish farm site. The results indicate that a negative mean pitch angle will occur when the current velocity is large.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.