氯化铝和1 -丁基- 3 -甲基咪唑氯离子液体电解质的电导率和种类分布

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC
Md Khalid Nahian, Ramana G. Reddy
{"title":"氯化铝和1 -丁基- 3 -甲基咪唑氯离子液体电解质的电导率和种类分布","authors":"Md Khalid Nahian,&nbsp;Ramana G. Reddy","doi":"10.1002/poc.4549","DOIUrl":null,"url":null,"abstract":"<p>Electrical conductivity (<i>σ</i>) of aluminum chloride (AlCl<sub>3</sub>) and 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl<sub>3</sub> mole fraction (\n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math>). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl<sub>3</sub>:BMIC ionic liquid was varied by changing the \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> from 0 to 0.5 and then starts to decrease after \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> = 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing \n<math>\n <msup>\n <mi>BMI</mi>\n <mo>+</mo>\n </msup></math>, \n<math>\n <msup>\n <mi>Cl</mi>\n <mo>−</mo>\n </msup></math>, \n<math>\n <mi>AlC</mi>\n <msubsup>\n <mi>l</mi>\n <mn>4</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>7</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>10</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>4</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>13</mn>\n <mo>−</mo>\n </msubsup></math>, and \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msub>\n <mi>l</mi>\n <mn>6</mn>\n </msub></math> at different \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math>. The only anion species presents between 0 and 0.5 \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> are \n<math>\n <msup>\n <mi>Cl</mi>\n <mo>−</mo>\n </msup></math> and \n<math>\n <mi>AlC</mi>\n <msubsup>\n <mi>l</mi>\n <mn>4</mn>\n <mo>−</mo>\n </msubsup></math>. Anions like \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>7</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>10</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>4</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>13</mn>\n <mo>−</mo>\n </msubsup></math>, and \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msub>\n <mi>l</mi>\n <mn>6</mn>\n </msub></math> are found at higher \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math>. A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl<sub>3</sub>:BMIC system.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical conductivity and species distribution of aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid electrolytes\",\"authors\":\"Md Khalid Nahian,&nbsp;Ramana G. Reddy\",\"doi\":\"10.1002/poc.4549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrical conductivity (<i>σ</i>) of aluminum chloride (AlCl<sub>3</sub>) and 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl<sub>3</sub> mole fraction (\\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math>). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl<sub>3</sub>:BMIC ionic liquid was varied by changing the \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> from 0 to 0.5 and then starts to decrease after \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> = 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing \\n<math>\\n <msup>\\n <mi>BMI</mi>\\n <mo>+</mo>\\n </msup></math>, \\n<math>\\n <msup>\\n <mi>Cl</mi>\\n <mo>−</mo>\\n </msup></math>, \\n<math>\\n <mi>AlC</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>4</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>7</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>10</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>4</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>13</mn>\\n <mo>−</mo>\\n </msubsup></math>, and \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>6</mn>\\n </msub></math> at different \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math>. The only anion species presents between 0 and 0.5 \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> are \\n<math>\\n <msup>\\n <mi>Cl</mi>\\n <mo>−</mo>\\n </msup></math> and \\n<math>\\n <mi>AlC</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>4</mn>\\n <mo>−</mo>\\n </msubsup></math>. Anions like \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>7</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>10</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>4</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>13</mn>\\n <mo>−</mo>\\n </msubsup></math>, and \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>6</mn>\\n </msub></math> are found at higher \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math>. A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl<sub>3</sub>:BMIC system.</p>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.4549\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4549","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 1

摘要

研究了氯化铝(AlCl3)和1-丁基-3-甲基咪唑氯(BMIC)离子液体(IL)的电导率(σ)随温度和AlCl3摩尔分数(X AlCl3)的变化规律。采用电化学阻抗谱法测定其电导率。AlCl3:BMIC离子液体的组成随着X AlCl3从0到0.67的变化而变化。温度以10°C的间隔从70°C变为110°C。我们发现电导率随温度的升高而增加。电导率随X alc_3从0 ~ 0.5增大,在X alc_3 = 0.5后开始减小。基于热力学模型,建立了含BMI +、Cl−、alc4−、a2c7−、a1c110−,a1c113−,和a2c16在不同的X alc13。存在于0 ~ 0.5 X alc13之间的阴离子只有Cl -和alc4 -。阴离子如a1c17−,a1c110−,a1c113−,和a2c16在较高的X alc13中发现。模型与实验数据吻合较好。阴离子浓度、分子结构和正阴离子相互作用的变化是引起AlCl3:BMIC体系电导率变化的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrical conductivity and species distribution of aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid electrolytes

Electrical conductivity and species distribution of aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid electrolytes

Electrical conductivity (σ) of aluminum chloride (AlCl3) and 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl3 mole fraction ( X AlC l 3 ). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl3:BMIC ionic liquid was varied by changing the X AlC l 3 from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with X AlC l 3 from 0 to 0.5 and then starts to decrease after X AlC l 3 = 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing BMI + , Cl , AlC l 4 , A l 2 C l 7 , A l 3 C l 10 , A l 4 C l 13 , and A l 2 C l 6 at different X AlC l 3 . The only anion species presents between 0 and 0.5 X AlC l 3 are Cl and AlC l 4 . Anions like A l 2 C l 7 , A l 3 C l 10 , A l 4 C l 13 , and A l 2 C l 6 are found at higher X AlC l 3 . A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl3:BMIC system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信