{"title":"氯化铝和1 -丁基- 3 -甲基咪唑氯离子液体电解质的电导率和种类分布","authors":"Md Khalid Nahian, Ramana G. Reddy","doi":"10.1002/poc.4549","DOIUrl":null,"url":null,"abstract":"<p>Electrical conductivity (<i>σ</i>) of aluminum chloride (AlCl<sub>3</sub>) and 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl<sub>3</sub> mole fraction (\n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math>). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl<sub>3</sub>:BMIC ionic liquid was varied by changing the \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> from 0 to 0.5 and then starts to decrease after \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> = 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing \n<math>\n <msup>\n <mi>BMI</mi>\n <mo>+</mo>\n </msup></math>, \n<math>\n <msup>\n <mi>Cl</mi>\n <mo>−</mo>\n </msup></math>, \n<math>\n <mi>AlC</mi>\n <msubsup>\n <mi>l</mi>\n <mn>4</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>7</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>10</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>4</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>13</mn>\n <mo>−</mo>\n </msubsup></math>, and \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msub>\n <mi>l</mi>\n <mn>6</mn>\n </msub></math> at different \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math>. The only anion species presents between 0 and 0.5 \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math> are \n<math>\n <msup>\n <mi>Cl</mi>\n <mo>−</mo>\n </msup></math> and \n<math>\n <mi>AlC</mi>\n <msubsup>\n <mi>l</mi>\n <mn>4</mn>\n <mo>−</mo>\n </msubsup></math>. Anions like \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>7</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>10</mn>\n <mo>−</mo>\n </msubsup></math>, \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>4</mn>\n </msub>\n <mi>C</mi>\n <msubsup>\n <mi>l</mi>\n <mn>13</mn>\n <mo>−</mo>\n </msubsup></math>, and \n<math>\n <mi>A</mi>\n <msub>\n <mi>l</mi>\n <mn>2</mn>\n </msub>\n <mi>C</mi>\n <msub>\n <mi>l</mi>\n <mn>6</mn>\n </msub></math> are found at higher \n<math>\n <msub>\n <mi>X</mi>\n <mrow>\n <mi>AlC</mi>\n <msub>\n <mi>l</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n </msub></math>. A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl<sub>3</sub>:BMIC system.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"36 10","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical conductivity and species distribution of aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid electrolytes\",\"authors\":\"Md Khalid Nahian, Ramana G. Reddy\",\"doi\":\"10.1002/poc.4549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrical conductivity (<i>σ</i>) of aluminum chloride (AlCl<sub>3</sub>) and 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl<sub>3</sub> mole fraction (\\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math>). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl<sub>3</sub>:BMIC ionic liquid was varied by changing the \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> from 0 to 0.5 and then starts to decrease after \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> = 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing \\n<math>\\n <msup>\\n <mi>BMI</mi>\\n <mo>+</mo>\\n </msup></math>, \\n<math>\\n <msup>\\n <mi>Cl</mi>\\n <mo>−</mo>\\n </msup></math>, \\n<math>\\n <mi>AlC</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>4</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>7</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>10</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>4</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>13</mn>\\n <mo>−</mo>\\n </msubsup></math>, and \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>6</mn>\\n </msub></math> at different \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math>. The only anion species presents between 0 and 0.5 \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math> are \\n<math>\\n <msup>\\n <mi>Cl</mi>\\n <mo>−</mo>\\n </msup></math> and \\n<math>\\n <mi>AlC</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>4</mn>\\n <mo>−</mo>\\n </msubsup></math>. Anions like \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>7</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>10</mn>\\n <mo>−</mo>\\n </msubsup></math>, \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>4</mn>\\n </msub>\\n <mi>C</mi>\\n <msubsup>\\n <mi>l</mi>\\n <mn>13</mn>\\n <mo>−</mo>\\n </msubsup></math>, and \\n<math>\\n <mi>A</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>C</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>6</mn>\\n </msub></math> are found at higher \\n<math>\\n <msub>\\n <mi>X</mi>\\n <mrow>\\n <mi>AlC</mi>\\n <msub>\\n <mi>l</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </msub></math>. A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl<sub>3</sub>:BMIC system.</p>\",\"PeriodicalId\":16829,\"journal\":{\"name\":\"Journal of Physical Organic Chemistry\",\"volume\":\"36 10\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/poc.4549\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4549","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Electrical conductivity and species distribution of aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid electrolytes
Electrical conductivity (σ) of aluminum chloride (AlCl3) and 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid (IL) was investigated as a function of temperature and AlCl3 mole fraction (
). Electrochemical impedance spectroscopy was used to measure the electrical conductivity. Composition of AlCl3:BMIC ionic liquid was varied by changing the
from 0 to 0.67. The temperature was changed from 70°C to 110°C at 10°C intervals. It was found that the electrical conductivity increases with an increase in temperature. Electrical conductivity increases with
from 0 to 0.5 and then starts to decrease after
= 0.5. A species concentration profile was developed based on thermodynamic model at room temperature for the IL containing
,
,
,
,
,
, and
at different
. The only anion species presents between 0 and 0.5
are
and
. Anions like
,
,
, and
are found at higher
. A good agreement between the model and the experimental data was obtained. The variations in anion concentration, molecular structure, and cation–anion interactions are to be the causes of the changes in electrical conductivity of AlCl3:BMIC system.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.